Hadoop 2.x的DistributedCache无法工作的问题

转自:http://www.codelast.com/?p=8131

现象:和这个帖子描述的一样,简单说来就是,在Hadoop 2.x上,用新的DistributedCache的API,在mapper中会获取不到这个cache文件。
下面就详细地描述一下新旧API的用法区别以及解决办法。

『1』旧API
将HDFS文件添加到distributed cache中:

1
2
Configuration conf = job.getConfiguration();
DistributedCache.addCacheFile(new URI(inputFileOnHDFS), conf);  // add file to distributed cache

其中,inputFileOnHDFS是一个HDFS文件的路径,也就是你要用作distribute cache的文件的路径,例如 /user/codelast/123.txt
在mapper的setup()方法中:

1
2
3
Configuration conf = context.getConfiguration();
Path[] localCacheFiles = DistributedCache.getLocalCacheFiles(conf);
readCacheFile(localCacheFiles[0]);

其中,readCacheFile()是我们自己的读取cache文件的方法,可能是这样做的(仅举个例子):

1
2
3
4
5
6
7
8
private static void readCacheFile(Path cacheFilePath) throws IOException {
  BufferedReader reader = new BufferedReader(new FileReader(cacheFilePath.toUri().getPath()));
  String line;
  while ((line = reader.readLine()) != null) {
    //TODO: your code here
  }
  reader.close();
}

文章来源:http://www.codelast.com/
『2』新API
上面的代码中,addCacheFile() 方法和 getLocalCacheFiles() 都已经被Hadoop 2.x标记为 @Deprecated 了。
因此,有一套新的API来实现同样的功能,这个链接里有示例,我在这里再详细地写一下。
将HDFS文件添加到distributed cache中:

1
job.addCacheFile(new Path(inputFileOnHDFS).toUri());

在mapper的setup()方法中:

1
2
3
Configuration conf = context.getConfiguration();
URI[] localCacheFiles = context.getCacheFiles();
readCacheFile(localCacheFiles[0]);

其中,readCacheFile()是我们自己的读取cache文件的方法,可能是这样做的(仅举个例子):

1
2
3
4
5
6
7
8
private static void readCacheFile(URI cacheFileURI) throws IOException {
  BufferedReader reader = new BufferedReader(new FileReader(cacheFileURI.getPath()));
  String line;
  while ((line = reader.readLine()) != null) {
    //TODO: your code here
  }
  reader.close();
}

但是就像文章开头的那个链接里所描述的问题一样,你可能会发现 context.getCacheFiles() 总是返回null,也就是你无法读到cache文件。
这个问题有可能是这个bug造成的,你可以对比一下你的Hadoop版本。
文章来源:http://www.codelast.com/
『3』解决办法
(1)打patch
(2)升级Hadoop版本
(3)使用旧的DistributedCache API,经测试OK
文章来源:http://www.codelast.com/

阅读更多
个人分类: hadoop
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭