并查集

力扣547
并查集主要用于解决一些元素分组的问题。
它管理一系列不相交的集合,并支持两种操作:

合并(Union):把两个不相交的集合合并为一个集合。
查询(Find):查询两个元素是否在同一个集合中。

亲戚问题

题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。

题目描述
规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。

输入格式
第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。
以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Mi和Mj具有亲戚关系。
接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。

输出格式
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。

模板

/**
 * 并查集算法
 * 我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己
 */
public class UnionFind {
	private int[] p;
	private int[] size;
	private int count;	
	public static void main(String[] args) {
		
	}
	public UnionFind(int n) {
		p = new int[n];
		size = new int[n];
		for(int i=0;i<n;i++) {
			p[i]=i;
			size[i]=1;
		}
		count = n;
	}
	public void union(int p, int q) {
		if(p==q)return;
		int x = find(p);
		int y = find(q);
		/**
		//容易导致树的不平衡
		if(x!=y) {
			this.p[x] = y;
			count--;
		}
		*/
		//小树接到大树下面,较平衡
		//通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在logN这个数量级,极大提升执行效率。
		if(size[x]>size[y]) {
			this.p[y]=x;
			size[x]+=size[y];
		}else {
			this.p[x]=y;
			size[y]+=size[x];
		}
		count--;
	}
	/**
	 * find主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。
	 * 我们可能习惯性地认为树的高度就是logN,但这并不一定。
	 * logN的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,
	 * 树的高度最坏情况下可能变成N。
	 */
	public int find(int x) {
		/**
		while(p[x]!=x) {
			x=p[x];
		}
		*/
		//我们能不能进一步压缩每棵树的高度,使树高始终保持为常数?
		while(p[x]!=x) {
			p[x]=p[p[x]];
			x=p[x];
		}
		return x;
	}
	public boolean connected(int p, int q) {
		return p==q?true:find(p)==find(q);
	}
	public int count() {
		return this.count;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值