力扣547
并查集主要用于解决一些元素分组的问题。
它管理一系列不相交的集合,并支持两种操作:
合并(Union):把两个不相交的集合合并为一个集合。
查询(Find):查询两个元素是否在同一个集合中。
亲戚问题
题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。
输入格式
第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。
以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Mi和Mj具有亲戚关系。
接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。
输出格式
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。
模板
/**
* 并查集算法
* 我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己
*/
public class UnionFind {
private int[] p;
private int[] size;
private int count;
public static void main(String[] args) {
}
public UnionFind(int n) {
p = new int[n];
size = new int[n];
for(int i=0;i<n;i++) {
p[i]=i;
size[i]=1;
}
count = n;
}
public void union(int p, int q) {
if(p==q)return;
int x = find(p);
int y = find(q);
/**
//容易导致树的不平衡
if(x!=y) {
this.p[x] = y;
count--;
}
*/
//小树接到大树下面,较平衡
//通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在logN这个数量级,极大提升执行效率。
if(size[x]>size[y]) {
this.p[y]=x;
size[x]+=size[y];
}else {
this.p[x]=y;
size[y]+=size[x];
}
count--;
}
/**
* find主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。
* 我们可能习惯性地认为树的高度就是logN,但这并不一定。
* logN的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,
* 树的高度最坏情况下可能变成N。
*/
public int find(int x) {
/**
while(p[x]!=x) {
x=p[x];
}
*/
//我们能不能进一步压缩每棵树的高度,使树高始终保持为常数?
while(p[x]!=x) {
p[x]=p[p[x]];
x=p[x];
}
return x;
}
public boolean connected(int p, int q) {
return p==q?true:find(p)==find(q);
}
public int count() {
return this.count;
}
}