学习笔记-深度优先搜索DFS寻找有向图环路实现

本文介绍了深度优先搜索(DFS)在寻找有向图环路中的实现,讨论了邻接矩阵和邻接表两种图的存储结构。在图的结点数目较大且边相对较少时,邻接表更高效。文章提供了使用Java实现的有向图环路检测,分别针对稀疏邻接矩阵和稠密邻接表两种情况。
摘要由CSDN通过智能技术生成

常用的图的存储结构主要有以下二种:邻接矩阵和邻接表

邻接矩阵与邻接表的对比:

1、当图中结点数目较小且边较多时,采用邻接矩阵效率更高。

2、当节点数目远大且边的数目远小于相同结点的完全图的边数时,采用邻接表存储结构更有效率。

有向图稀疏邻接矩阵结构寻找环路Java实现

import java.util.*;

import org.apache.commons.lang.StringUtils;

public class DFSSparseCycle {

	/** 点数 */
	private int vertexCount;
	/** 有向图的稀疏邻接矩阵 */
	private int[][] sparseAdjacencyMatrix;
	/** 点访问状态, 0未访问 1已访问 */
	private int[] vertexAccessStatus;
	/** 追踪栈 */
	private List<Integer> traceStack = new ArrayList<Integer>();
	/** 环列表 */
	private List<List<Integer>> cycles = new ArrayList<List<Integer>>();

	public DFSSparseCycle(int[][] sparseAdjacencyMatrix) {
		this.sparseAdjacencyMatrix = sparseAdjacencyMatrix;
		this.vertexCount = sparseAdjacencyMatrix.length;
		vertexAccessStatus = new int[vertexCount];
		Arrays.fill(vertexAccessStatus, 0);
	}

	public void findCycle() {
		for (int i = 0; i < vertexCount; i++) {
            vertexAccessStatus = new int[vertexCount];
			Arrays.fill(vertexAccessStatus, 0);
			findCycle(i);
		}
	}

	public void findCycle(int vertex) {
		if (vertexAccessStatus[vertex] == 1) {
			int j = 0;
			if ((j = traceStack.indexOf(vertex)) != -1) {
				List<Integer> cycle = new ArrayList<Integer>();
				while (j < traceStack.size()) {
					cycle.add(traceStack.get(j));
					j++;
				}
				cycles.add(cycle);
				return;
			}
			return;
		}
		vertexAccessStatus[vertex] = 1;
		traceStack.add(vertex);

		for (int i = 0; i < vertexCount; i++) {
			if (sparseAdjacencyMatrix[vertex][i] == 1) {
	
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值