Android_基于G-Sensor的计步算法

大家好,插播一下,最近花了点时间,基于g-sensor,在做一些姿势识别的事情,比如走路,跑步,骑车,起立,坐下,文章还在整理,欢迎关注。周末争取传个apk给大家体验一下。

基于g-sensor的起立坐下的的识别:http://blog.csdn.net/finnfu/article/details/78543693




下面是计步算法正文:

一、写在分享之前



最新发现了很多文章将算法直接拿去用,简书上,github上,导致下面有很多疑问。

希望大家转载或者改造的时候,可以注明一下算法的原作者为 finnfu以及原文链接,谢谢。


很多人问源码地址,因为一些原因不能提供,写了个简单的算法demo,以及算法介绍文档。

https://github.com/finnfu/stepcount

如果觉得对你有帮助,请给个star吧!


下面是正文:


学习android也有将近一年的时间了,一直在看大牛们分享的知识,今天也想分享自己之前的一点研究,关于计步器算法的。目前在计步领域比较领先的有乐动力以及春雨计步器,在做算法的参数调试的时候也是一直拿这两个应用做对比。乐动力当之无愧行业第一,不管是应用的体验还是准确度都是非常棒,春雨计步器的亮点是轻量级,使用以及界面操作都很简单。之前因为一些需求,需要做一个计步器,所以就开始自己研究算法了,各种场景(走路拿在手上,放在口袋,跑步),算法的准确度大概可以达到95.7%,综合起来觉得是比春雨略好,但是赢不了乐动力(可以达到97.7%)在体验和大局观为王的互联网时代,我觉得技术上的差距会越来越小,重要的是体验还有对于产品的定位,所以决定将算法与大家分享,第一是希望可以帮到到家,第二也是希望大家提一些意见,让这个算法可以得到改进。

计步器apk下载地址

http://download.csdn.net/detail/finnfu/9534158


二、计步器算法的总体思路以及辅助调试的工具

人在走路时大致分为下面几种场景:

1、正常走路,手机拿在手上(边走边看、甩手、不甩手)

2、慢步走,手机拿在手上(边走边看、甩手、不甩手)

3、快步走,手机拿在手上(甩手、不甩手、走的很快一般不会看手机吧)

4、手机放在裤袋里(慢走、快走、正常走)

5、手机放在上衣口袋里(慢走、快走、正常走)

6、上下楼梯(上面五中场景可以在这个场景中再次适用一遍)

以上,不管出于哪一种场景(其实对应手机不同的运动规律),g-sensor的三轴数据都是有规律可以寻找的。

每一步都有特征点,找到这个特征点,就是识别出来一步。

下面推荐一个工具,叫gsensor-debug,可以观察三轴的曲线,下面是手机上下摆动的曲线


这是很规律曲线只要检测波峰就行了,实际的走路曲线会有很多杂波,算法的作用就是滤除这些杂波(走路的波形可以用工具自己看,可以保存为文件,用excel打开有数据,将数据转换为波形就可以自己看)


三、算法的介绍(贴出核心代码)

1、变量的定义

<span style="font-size:14px;">//存放三轴数据
float[] oriValues = new float[3];
final int valueNum = 4;
//用于存放计算阈值的波峰波谷差值
float[] tempValue = new float[valueNum];
int tempCount = 0;
//是否上升的标志位
boolean isDirectionUp = false;
//持续上升次数
int continueUpCount = 0;
//上一点的持续上升的次数,为了记录波峰的上升次数
int continueUpFormerCount = 0;
//上一点的状态,上升还是下降
boolean lastStatus = false;
//波峰值
float peakOfWave = 0;
//波谷值
float valleyOfWave = 0;
//此次波峰的时间
long timeOfThisPeak = 0;
//上次波峰的时间
long timeOfLastPeak = 0;
//当前的时间
long timeOfNow = 0;
//当前传感器的值
float gravityNew = 0;
//上次传感器的值
float gravityOld = 0;
//动态阈值需要动态的数据,这个值用于这些动态数据的阈值
final float initialValue = (float) 1.3;
//初始阈值
float ThreadValue = (float) 2.0;
private StepListener mStepListeners;</span>


2. 代码,结合注释看

检测步子就是检测波峰,但是要滤除无效的波峰,主要采用了如下三种措施

a、规定曲线连续上升的次数

b、波峰波谷的差值需要大于阈值

c、阈值是动态改变的

另一个是一些参数的初始值,比如initialValue 以及ThreadValue 的初始值,以及averageValue函数的梯度化范围值

需要结合各种场景的波形图来统计,还有几十实际的测试来调试参数,这些参数大概前后调了两个星期,其实总体思路不复杂。

下面贴出核心代码以及一些注释:

(因为一些原因,整个工程我就不传了,后面有时间我可以将app传上来)

<span style="font-size:14px;">	/*
	 * 注册了G-Sensor后一只会调用这个函数
	 * 对三轴数据进行平方和开根号的处理
	 * 调用DetectorNewStep检测步子
	 * */
	@Override
	public void onSensorChanged(SensorEvent event) {
		for (int i = 0; i < 3; i++) {
			oriValues[i] = event.values[i];
		}
		gravityNew = (float) Math.sqrt(oriValues[0] * oriValues[0]
				+ oriValues[1] * oriValues[1] + oriValues[2] * oriValues[2]);
		DetectorNewStep(gravityNew);
	}

	/*
	 * 检测步子,并开始计步
	 * 1.传入sersor中的数据
	 * 2.如果检测到了波峰,并且符合时间差以及阈值的条件,则判定为1步
	 * 3.符合时间差条件,波峰波谷差值大于initialValue,则将该差值纳入阈值的计算中
	 * */
	public void DetectorNewStep(float values) {
		if (gravityOld == 0) {
			gravityOld = values;
		} else {
			if (DetectorPeak(values, gravityOld)) {
				timeOfLastPeak = timeOfThisPeak;
				timeOfNow = System.currentTimeMillis();
				if (timeOfNow - timeOfLastPeak >= 250
						&& (peakOfWave - valleyOfWave >= ThreadValue)) {
					timeOfThisPeak = timeOfNow;
					/*
					 * 更新界面的处理,不涉及到算法
					 * 一般在通知更新界面之前,增加下面处理,为了处理无效运动:
					 * 1.连续记录10才开始计步
					 * 2.例如记录的9步用户停住超过3秒,则前面的记录失效,下次从头开始
					 * 3.连续记录了9步用户还在运动,之前的数据才有效
					 * */
					mStepListeners.onStep();
				}
				if (timeOfNow - timeOfLastPeak >= 250
						&& (peakOfWave - valleyOfWave >= initialValue)) {
					timeOfThisPeak = timeOfNow;
					ThreadValue = Peak_Valley_Thread(peakOfWave - valleyOfWave);
				}
			}
		}
		gravityOld = values;
	}

	/*
	 * 检测波峰
	 * 以下四个条件判断为波峰:
	 * 1.目前点为下降的趋势:isDirectionUp为false
	 * 2.之前的点为上升的趋势:lastStatus为true
	 * 3.到波峰为止,持续上升大于等于2次
	 * 4.波峰值大于20
	 * 记录波谷值
	 * 1.观察波形图,可以发现在出现步子的地方,波谷的下一个就是波峰,有比较明显的特征以及差值
	 * 2.所以要记录每次的波谷值,为了和下次的波峰做对比
	 * */
	public boolean DetectorPeak(float newValue, float oldValue) {
		lastStatus = isDirectionUp;
		if (newValue >= oldValue) {
			isDirectionUp = true;
			continueUpCount++;
		} else {
			continueUpFormerCount = continueUpCount;
			continueUpCount = 0;
			isDirectionUp = false;
		}

		if (!isDirectionUp && lastStatus
				&& (continueUpFormerCount >= 2 || oldValue >= 20)) {
			peakOfWave = oldValue;
			return true;
		} else if (!lastStatus && isDirectionUp) {
			valleyOfWave = oldValue;
			return false;
		} else {
			return false;
		}
	}

	/*
	 * 阈值的计算
	 * 1.通过波峰波谷的差值计算阈值
	 * 2.记录4个值,存入tempValue[]数组中
	 * 3.在将数组传入函数averageValue中计算阈值
	 * */
	public float Peak_Valley_Thread(float value) {
		float tempThread = ThreadValue;
		if (tempCount < valueNum) {
			tempValue[tempCount] = value;
			tempCount++;
		} else {
			tempThread = averageValue(tempValue, valueNum);
			for (int i = 1; i < valueNum; i++) {
				tempValue[i - 1] = tempValue[i];
			}
			tempValue[valueNum - 1] = value;
		}
		return tempThread;

	}
<pre name="code" class="java">	/*
	 * 梯度化阈值
	 * 1.计算数组的均值
	 * 2.通过均值将阈值梯度化在一个范围里
	 * 3.参数暂时不开放(a,b,c,d,e,f,g,h,i,i,k,l)
	 * */
	public float averageValue(float value[], int n) {
		float ave = 0;
		for (int i = 0; i < n; i++) {
			ave += value[i];
		}
		ave = ave / valueNum;
		if (ave >= a)
			ave = (float) b;
		else if (ave >= c && ave < d)
			ave = (float) e;
		else if (ave >= f && ave < g)
			ave = (float) h;
		else if (ave >= i && ave < j)
			ave = (float) k;
		else {
			ave = (float) l;
		}
		return ave;
	}


 


---------------------------------------------------------------------------------欢迎交流-----------------------------------------------------------------------------------------------------




©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页