fire9
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
22、实时业务中的数据可视化、安全与身份管理
本文探讨了在实时业务中如何利用 Power BI 和 Azure 服务实现数据可视化、自动警报和通知,并深入介绍了安全和身份管理的关键技术,包括威胁建模、数据加密、密钥管理以及多租户身份验证。通过实际应用案例,展示了这些技术在物联网健康监测系统中的具体应用,为企业实现高效运营和数据安全提供了全面的解决方案。原创 2025-08-01 07:54:48 · 54 阅读 · 0 评论 -
21、利用 Power BI 实现数据可视化、警报和通知
本文介绍了如何利用 Power BI 和 Azure 服务实现数据可视化、实时警报和通知功能。通过 C# 设备模拟器生成传感器数据,结合 Azure IoT 中心、流分析和机器学习服务,实现了团队成员健康状况的实时监测。Power BI 用于构建实时仪表板和数据可视化,同时通过 Azure Functions 集成 Twilio 和 SendGrid 发送 SMS 和电子邮件警报。整个方案展示了从数据采集、处理、分析到可视化和通知的完整流程,适用于 IoT 和实时数据分析场景。原创 2025-07-31 13:42:08 · 29 阅读 · 0 评论 -
20、Power BI的数据可视化、警报与通知全解析
本文全面解析了Power BI在数据可视化、警报与通知方面的功能与应用场景。涵盖了Power BI的基础功能如Power BI Embedded、Power BI ReST APIs、自定义可视化效果、自然语言查询(Q&A)以及与Cortana的集成。同时,深入探讨了基于Azure技术(如Event Hubs、Stream Analytics和Functions)构建实时数据监控与通知系统的架构与实现流程。通过实际案例分析展示了这些技术如何协同工作,为企业提供高效的数据驱动决策支持。原创 2025-07-30 14:16:47 · 76 阅读 · 0 评论 -
19、机器学习、R语言与Power BI助力数据洞察与可视化
本文深入探讨了如何利用机器学习、R语言和Power BI进行数据洞察与可视化,涵盖了机器学习技术与微软产品的集成、Azure Machine Learning的模型重新训练、Power BI的可视化功能及其与R语言的结合应用。文章还介绍了现代商业智能格局的变化,以及如何通过Power BI实现数据可视化、警报通知和Lambda架构的实际操作。最后,文章展望了未来数据科学的发展趋势。原创 2025-07-29 12:31:33 · 46 阅读 · 0 评论 -
18、利用机器学习和R语言进行高级分析
本文深入介绍了如何结合Azure Machine Learning Studio和R语言进行高级数据分析和预测建模。内容涵盖Azure Machine Learning Studio的基础功能、模块分类与实验要求、数据科学流程、R语言的相关集成与应用,以及一个完整的参考实现案例——通过机器学习预测团队成员的身体疲劳点。此外,还总结了技术要点、优势、未来发展趋势及实践建议,为数据科学家和开发者提供全面的指导和参考。原创 2025-07-28 11:38:21 · 29 阅读 · 0 评论 -
17、揭秘Azure数据湖分析与机器学习的高级应用
本文介绍了Azure数据湖分析(ADLA)与Azure机器学习的强大功能及其在大规模数据处理和预测分析中的应用。内容涵盖ADLA的关键特性、机器学习的基础概念、历史发展与行业应用,以及微软如何通过Azure机器学习服务让机器学习技术更加普及和易用。无论是零售、金融服务、医疗保健还是制造业,企业都能借助这些技术实现更高效的运营和精准决策。原创 2025-07-27 09:07:23 · 24 阅读 · 0 评论 -
16、利用 Azure Data Lake Analytics 进行高级分析
本文详细介绍了如何利用 Azure Data Lake Analytics (ADLA) 进行高级数据分析,涵盖了 ADLA 的联邦查询支持的数据源、U-SQL 中的行集组合操作、Azure 门户集成、大数据作业管理、U-SQL 的内置优化功能,以及如何从数据源规划到 ADLA 数据库和 Azure SQL 数据库的完整数据处理流程。文章还提供了具体的操作步骤和代码示例,帮助开发者高效地进行数据提取、转换、存储和分析。最后,通过 Mermaid 流程图展示了整个数据处理流程,并对未来的扩展方向进行了展望,为原创 2025-07-26 13:04:21 · 34 阅读 · 0 评论 -
15、深入探索Azure Data Lake Analytics高级分析功能
本文深入介绍了Azure Data Lake Analytics(ADLA)的高级分析功能,涵盖U-SQL语言特性、联合查询、窗口函数以及Visual Studio工具的使用。内容包括ADLA的开发环境配置、数据处理流程、性能优化方法及联合查询的具体实现步骤。通过详细的说明和示例,帮助开发者和企业更好地掌握ADLA在大数据分析中的应用,并提升开发效率和灵活性。原创 2025-07-25 15:06:21 · 36 阅读 · 0 评论 -
14、深入了解Azure数据工厂与Azure数据湖分析:大数据处理与分析的利器
本文深入介绍了Azure数据工厂和Azure数据湖分析的功能及其在大数据处理与分析中的应用。Azure数据工厂是用于执行ETL操作的强大工具,支持数据移动、更新参考数据以及重新训练机器学习模型等场景。Azure数据湖分析(ADLA)则基于分布式计算架构,提供动态扩展能力,结合U-SQL语言实现高效的数据查询与处理,适用于金融、制造、医疗等多个行业的复杂数据分析需求。文章还通过表格和流程图清晰总结了ADLA的核心功能与使用流程,并探讨了其在实际场景中的应用及未来发展趋势。原创 2025-07-24 11:42:10 · 33 阅读 · 0 评论 -
13、Azure Data Factory与Data Lake Store的批量处理实战
本文详细介绍了如何在Azure平台上使用Data Factory和Data Lake Store进行高效的批量数据处理。涵盖了Data Factory的性能优化策略,如并行复制和DMU配置,以及Data Lake Store的安全特性与数据管理实践。同时,文章通过实战案例展示了如何更新参考数据、集成Azure ML模型训练与更新,并提供了数据从Blob存储迁移至Data Lake的完整流程。适合希望利用Azure平台进行大规模数据处理的技术人员参考。原创 2025-07-23 13:07:49 · 31 阅读 · 0 评论 -
12、实时与批量数据处理:Azure 流分析与数据工厂的应用指南
本文深入探讨了Azure流分析和Azure数据工厂在现代数据架构中的关键作用。Azure流分析适用于实时数据处理,支持热、温、冷三种数据路径,能够实现即时的业务洞察和决策支持。而Azure数据工厂则专注于批量数据处理,提供强大的数据集成、转换和调度功能,满足企业复杂的数据管理需求。文章通过实际案例展示了这两个工具如何协同工作,以实现高效的大数据处理与分析,助力企业数字化转型。原创 2025-07-22 13:06:13 · 38 阅读 · 0 评论 -
11、利用 Azure Stream Analytics 进行实时处理
本文详细介绍了如何利用 Azure Stream Analytics 进行实时数据处理和分析,涵盖时间管理、SQL 查询编程模型、数据输入输出配置以及实际业务用例场景。通过具体的示例和步骤,帮助开发者高效构建流式数据处理作业,实现从数据采集到可视化的完整解决方案。原创 2025-07-21 10:37:59 · 31 阅读 · 0 评论 -
10、利用 Azure Stream Analytics 进行实时处理
本文详细介绍了如何利用 Azure Stream Analytics 进行实时数据处理,包括其核心功能、输入输出规划、SQL 查询转换、与机器学习的集成等内容。同时,还分析了其在多个行业中的应用场景和优势,并提供了操作流程、对比分析以及未来展望,帮助用户更好地理解和使用 Azure Stream Analytics 来挖掘数据价值。原创 2025-07-20 13:29:28 · 27 阅读 · 0 评论 -
9、实时数据处理:Azure 流分析的应用与优势
本文深入探讨了 Azure 流分析在实时数据处理中的应用与优势,结合 Lambda 架构和流处理技术,解析了如何高效处理海量实时数据并提取业务价值。内容涵盖传感器连接、时间序列分析、预测分析、Azure流分析与其他流处理方案的对比,以及具体的实现操作步骤。适合关注物联网、大数据分析和云平台流处理技术的企业和技术人员参考。原创 2025-07-19 14:01:52 · 62 阅读 · 0 评论 -
8、物联网边缘网关与智能设备开发实践
本文介绍了物联网边缘网关的概念及其在本地处理传感器数据的功能,包括聚合、分析、过滤和警报等操作。同时详细讲解了如何使用 Azure IoT SDK 和 Windows 10 IoT Core 创建、部署智能设备应用到 DragonBoard 单板计算机,并通过 SPI 通信获取传感器数据。此外,还展示了如何修改团队模拟器应用程序以模拟多租户物联网解决方案。整个过程涵盖硬件设置、软件编程、配置管理和数据模拟等多个方面,为构建完整的物联网系统提供了实践指导。原创 2025-07-18 09:35:49 · 21 阅读 · 0 评论 -
7、物联网中的传感器、设备与网关深度解析
本文深入解析了物联网中的核心组件,包括传感器、可编程逻辑控制器(PLC)、GSM调制解调器、RFID系统、蓝牙信标、智能设备以及单板计算机(SBC)等,详细介绍了它们的功能、应用场景以及面临的挑战。文章还探讨了物联网架构的构建方式,各组件之间的关系,以及物联网解决方案的规划与实施步骤。最后,展望了未来物联网技术的发展趋势,如传感器技术的进步、人工智能融合、5G应用和安全隐私保护等方面,帮助读者全面理解并构建高效、智能的物联网系统。原创 2025-07-17 13:26:31 · 21 阅读 · 0 评论 -
6、物联网中心设备管理全解析
本文详细解析了物联网中心的设备管理功能,涵盖直接方法、查询、作业、设备退役等核心技术,同时通过代码示例展示了如何实现设备管理操作。此外,还介绍了设备模拟器的搭建与测试方法,帮助开发者全面掌握物联网设备管理的关键技术和实践步骤。原创 2025-07-16 16:50:59 · 23 阅读 · 0 评论 -
5、物联网设备管理:从DevOps到IoT Hub的全面指南
本文深入探讨了物联网设备管理的各个方面,从DevOps自动化到使用Azure IoT Hub进行设备通信与管理。内容涵盖了设备生命周期、预配、配置与监控、设备API、设备孪生、直接方法、作业管理以及查询功能等关键技术。通过结合DevOps最佳实践和Azure IoT Hub的强大功能,帮助构建高效、安全且可扩展的物联网设备管理系统,满足大规模设备连接和管理的需求。原创 2025-07-15 16:36:01 · 35 阅读 · 0 评论 -
4、基于PowerShell、ARM和VSTS的DevOps实践指南
本文详细介绍了基于PowerShell、Azure Resource Manager(ARM)模板和Visual Studio Team Services(VSTS)的完整DevOps实践流程。涵盖了从PowerShell脚本编写、Azure资源预配、VSTS项目配置、构建定义、微服务部署到API管理、测试验证及模拟数据加载的全过程。通过标准化的自动化流程,帮助开发团队实现高效的云资源管理和应用程序部署,适用于企业级微服务架构的持续集成与交付场景。原创 2025-07-14 09:20:27 · 28 阅读 · 0 评论 -
3、实时业务与DevOps实践
本文探讨了实时业务与DevOps实践的结合,重点介绍了实时业务基础架构、微软Azure相关服务、DevOps核心流程以及两者结合所带来的效率提升、灵活性增强和团队协作优化。通过一个工人健康与安全的参考实现,展示了如何在Azure平台上构建完整的实时业务解决方案,并详细说明了实施步骤、工具选择、安全保障及优化方向。原创 2025-07-13 12:15:37 · 56 阅读 · 0 评论 -
2、实时业务:从概念到实现
本文探讨了企业如何通过实时业务实现数字化转型,涵盖了从实时数据的应用场景、平台方法、实时业务平台的核心要素,到物联网与大数据的融合、高级分析的实现以及参考架构的组件交互流程。文章还总结了实时业务带来的运营效率提升、客户体验增强等优势,并讨论了在实施过程中可能面临的挑战及应对策略。最后,展望了未来实时业务的发展趋势,包括人工智能的深度融合、边缘计算的兴起以及行业标准的完善等。原创 2025-07-12 10:09:40 · 29 阅读 · 0 评论 -
1、实时商业与Azure技术应用全解析
本文全面解析了实时商业的概念、背景及其技术需求,并深入探讨了Microsoft Azure技术在实时商业中的应用。内容涵盖从设备连接、数据处理到高级分析和可视化的完整架构,结合Azure IoT、Stream Analytics、Data Lake Analytics等工具的实践操作,同时分析了安全与身份验证、DevOps、机器学习等关键环节。通过具体案例和未来趋势分析,为企业构建高效、智能、安全的实时商业系统提供了完整的解决方案与实施建议。原创 2025-07-11 13:31:57 · 38 阅读 · 0 评论
分享