描述
给定一个无序数组arr,找到数组中未出现的最小正整数
例如arr = [-1, 2, 3, 4]。返回1
arr = [1, 2, 3, 4]。返回5
[要求] 时间复杂度为O(n),空间复杂度为O(1)
解题思路1:
将无序数组arr排序,从头到尾遍历数组,当数组元素arr[i]不等于下标+1时即为未出现的最小正整数
#include<bits/stdc++.h>
using namespace std;
int main(){
int N;
cin>>N;
int res=1;
vector<int>arr(N);
for(int i=0;i<N;++i){
cin>>arr[i];
}
sort(arr.begin(), arr.end());
for(int i=0;i<N;++i){
if(arr[i]==res){
res++;
}
}
cout<<res<<endl;
}
此时时间复杂度为O(nlogn),空间复杂度为O(1),未达到题目要求的O(n)
解题思路2:
采用双指针法,其中left初始为零,left将数组分为两部分,[0,left)是处理完成的部分,其中每个元素都满足a[i]=i+1;[left,right]是待处理部分。随着数组元素被处理,left会逐渐向右移动。
right是一边界值,初始等于数组长度,表示用数组中元素组成的从1开始的连续整数序列中可能的最大值,处理数组过程中如果遇到比right大的数,就表示该数不合法,随着数组元素被处理,每遇到一个不合法的元素,就应将right减1。
- 在遍历数组时,如果arr[left]==left+1,此时元素满足a[i]=i+1,处理完成的部分+1,然后继续处理未完成部分的下一个待处理元素
- 当arr[left]<left+1||arr[left]>right时,此时arr[left]不合理,因此应将right减1,但此时arr[right]未处理,应将arr[right]填充到arr[left]处处理
- arr[left]合法时,但是没有在理想的位置上,则需要交换arr[

在无序数组中查找未出现的最小正整数。通过排序或双指针法实现,要求时间复杂度为O(n),空间复杂度为O(1)。两种解题思路分别是对数组排序后遍历,以及使用双指针调整数组元素至正确位置。
最低0.47元/天 解锁文章

1378

被折叠的 条评论
为什么被折叠?



