到目前为止,一切很简单,也很清楚,百度怎么处理用户查询的呢?归纳如下:首先根据分割符号将查询分开,然后看看是否有重复的字符串,如果有,就抛弃多余的,只保留一个,接着判断是否有英文或者数字,如果有的话,把英文或者数字当作一个整体保留并把前后的中文切开。 接着该干什么呢?该考虑分词的问题了。
二、中文分词
首先,讲讲百度的分词时机或者条件问题,是否是个中文字符串百度就拿来切一下呢?非也,要想被百度的分词程序荣幸的切割一下也是要讲条件的,哪能是个字符串就切割啊?你当百度是卖锯条的么?
那么什么样的字符串才满足被切割的条件呢?简单说来,如果字符串只包含小于等于3个中文字符的话,那就保留不动,当字符串长度大于4个中文字符的时候,百度的分词程序才出马大干快上,把这个字符串肢解掉。
怎么证明呢?我们向百度提交“电影下载”,看看返回结果中标为红字的地方,不难看出来,查询已经被切割成两个单词了,说明分词程序已经开工了,如果是比4个中文字符更长的字符串,那分词程序就更不客气了,一定大卸八块而后快。我们来看看三个字符的情况,提交查询“当然择”,看起来这个查询不伦不类,那是因为我希望看到这个字符串被切分为,返回结果365篇相关页面,翻到最后一页,发现标红的关键字都是” 当然择”连续出现的情况,好像没有切分,但是还不确定,那么再提交人工分好的查询“当然择”看看,返回结果1,090,000篇,基本上可以确定没有进行分词了,当然另外一种解释是:对于三个字符先切分,然后将切分后的结果当作一个短语查询,这样看到的效果和没有切分是相似的。
但是我倾向于判断百度对于少于3个字符的串没有切分,奥卡姆不是说了么“如无必要,勿增实体”,干吗做无用功呢。那么如果没有切分,会有一个随之而来的问题,怎么从索引库里面提取未切分的字符串呢?这牵扯到索引的问题,我觉得百度应该采取了两套索引机制,一种是按照单词索引,一种是按照N-GRAM索引,至于索引的具体问题,以后在详细论述。
下面我们看看百度是采取的何种分词算法,现在分词算法已经算是比较成熟了,有简单的有复杂的,比如正向最大匹配,反向最大匹配,双向最大匹配,语言模型方法,最短路径算法等等,有兴趣的可以用GOOGLE去搜索一下以增加理解。这里就不展开说了。但是要记住一点的是:判断一个分词系统好不好,关键看两点,一个是消除歧义能力;一个是词典未登录词的识别比如人名,地名,机构名等。
那么百度用的是什么方法?我的判断是用双向最大匹配算法。至于怎么推理得出的,让我们一步步来看。当然,这里首先有个假设,百度不会采取比较复杂的算法,因为考虑到速度问题。
我们提交一个查询“毛泽东北京华烟云”,又一个不知所云的查询,尽管不知所云但是自有它的道理,我想看看百度的分词是如何消歧以及是否有词典未登录词的识别的功能,如果是正向最大匹配算法的话,那么输出应该是:”毛泽东/北京/华/烟云”,如果是反向最大匹配算法的话,那么输出应该是:”毛/泽/东北/京华烟云”,我们看看百度的分词结果:”毛泽东/北/京华烟云”,一个很奇怪的输出,跟我们的期望相差较多,但是从中我们可以获得如下信息:百度分词可以识别人名,也可以识别”京华烟云”,这说明有词典未登录词的识别的功能,我们可以假设分词过程分为两个阶段:第一阶段,先查找一个特殊词典,这个词典包含一些人名,部分地名以及一些普通词典没有的新词,这样首先将”毛泽东”解析出来,剩下了字符串”北京华烟云”,而”北/京华烟云”,可以看作是反向最大匹配的分词结果。这样基本说得通。为了证明这一点,我们提交查询”发毛泽东北”,我们期望两种分词结果,一个是正向最大匹配,一个是上述假设的结果,事实上百度输出是第二种情况,这样基本能确定百度分词采取了至少两个词典,一个是普通词典,一个是专用词典(人名等)。而且是专用词典先切分,然后将剩余的片断交由普通词典来切分。
百度分词算法详解【二】
最新推荐文章于 2015-06-15 23:16:17 发布