5、特征缩放

原创 2018年04月16日 21:28:05

当多个特征的范围差距过大时,代价函数的轮廓图会非常的偏斜,如下图左所示,这会导致梯度下降函数收敛的非常慢。因此需要特征缩放(feature scaling)来解决这个问题,特征缩放的目的是把特征的范围缩放到接近的范围。当把特征的范围缩放到接近的范围,就会使偏斜的不那么严重。通过代价函数执行梯度下降算法时速度回加快,更快的收敛。


特征缩放

一,特征缩放定义 特征缩放是用来标准化数据特征的范围。 二,特征缩放的作用及原理 特征缩放是针对多特征情况的。当有多个特征向量的时候,如果其中一个变化范围比较大,根据上次所说的多特征梯度下降...
  • sd9110110
  • sd9110110
  • 2016-12-04 13:33:53
  • 1126

特征缩放(Feature Scaling)

特征缩放解释: 数据中某一维度的数值过大或过小时,将他们尽量缩放到[-1,1]或[0,1]之间.所谓特征的尺度,即代表该特征的维度上的数值大小. 特征缩放作用: 如K-NN算法中,如果某...
  • godotlee
  • godotlee
  • 2016-12-28 10:54:03
  • 425

梯度下降实用技巧I之特征缩放 Gradient Descent in practice I - feature scaling

梯度下降实用技巧I之特征缩放 Gradient Descent in practice I - feature scaling 当多个特征的范围差距过大时,代价函数的轮廓图会非常的偏斜,如下图左所示,...
  • u012328159
  • u012328159
  • 2016-03-31 22:06:17
  • 3188

【机器学习】特征缩放

特征缩放公式 这个公式的优点是 值较稳定,在【0,1】之间 缺点是如果有异常值,特征缩放会很棘手,因为Xmin和Xmax可能是极端值 如果Xmin和Xmax相等,分母为0. """ quiz m...
  • duxinyuhi
  • duxinyuhi
  • 2016-11-09 16:23:20
  • 860

Stanford机器学习---第二周.特征缩放、正规方程

第二周  第四讲   多元线性回归(Linear Regression with multiple variables) 1.多元线性回归模型 假设/拟合函数Hypothesis:          ...
  • u012717411
  • u012717411
  • 2016-01-08 14:32:26
  • 2142

机器学习--特征缩放/均值归一化

特征缩放(feature scaling) 均值归一化 梯度下降算法
  • runnerxin
  • runnerxin
  • 2017-11-16 14:41:58
  • 698

特征缩放与正规化

特征缩放的概念及使用时机 正规化的概念、作用以及如何正规化 了解正规方程的概念 熟悉Octave语法及常用函数...
  • loveSophiaW
  • loveSophiaW
  • 2017-03-01 08:32:13
  • 471

浅谈机器学习中的特征缩放

引言 在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature scaling),比如:在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时...
  • Alis_xt
  • Alis_xt
  • 2017-03-28 16:24:49
  • 630

教女友学习机器学习0X01——多变量线性回归、特征缩放与多项式回归

基于Andrew Ng在Coursera上的机器学习的课程,介绍了多变量线性回归、特征缩放与多项式回归...
  • tiancai13579
  • tiancai13579
  • 2017-05-27 14:23:33
  • 608

机器学习中的特征缩放(feature scaling)浅谈

引言在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature scaling),比如:在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时能提...
  • iterate7
  • iterate7
  • 2017-12-23 18:51:56
  • 244
收藏助手
不良信息举报
您举报文章:5、特征缩放
举报原因:
原因补充:

(最多只允许输入30个字)