CNN卷积层图像和矩阵转换函数

将图像维度转换为矩阵,和将矩阵转换为图像维度。深度学习框架都会有这样的功能。 import numpy as np def im2col(input_data, filter_h, filter_w, stride=1, pad=0): ""&am...

2018-12-30 11:01:34

阅读数:83

评论数:0

神经网络最优化方法比较(代码理解)

为高效找到使损失函数的值最小的参数,关于最优化(optimization)提了很多方法。 http://ruder.io/optimizing-gradient-descent/  本网页介绍的原理可以参考。下面这段代码取自一本教材,比较经典。 # coding: utf-8 import ...

2018-12-26 10:12:34

阅读数:45

评论数:0

Google开源库Image Captioning部署记录

Github库:https://github.com/tensorflow/models/tree/master/research/im2txt 场景:给一张图片,描述图片内容。如下图: 环境:ubuntu,记住用户必须对目录有权限。 1、下载开源包:git clone https://...

2018-12-25 10:54:12

阅读数:94

评论数:0

开源库OpenNMT-py使用记录

一、准备 官网:http://opennmt.net/ python+torch版Github:https://github.com/OpenNMT/OpenNMT-py python+torch版说明:http://zh.opennmt.net/OpenNMT-py/main.html ...

2018-12-21 09:00:13

阅读数:116

评论数:0

【IM】关于多任务学习的理解

多任务学习有其特定适用场景,对于多标签学习可以用多任务学习来实现是一个思路。

2018-10-31 20:10:24

阅读数:88

评论数:0

【IM】关于迁移学习的理解

迁移学习:应用其他学习任务的信息来提升当前学习任务的求解精度,前提是两个学习任务之间存在关联。 这里对于半监督迁移学习给出了协变量移位和类别不平衡两种场景。 ...

2018-10-30 17:07:15

阅读数:110

评论数:0

【IM】关于监督降维的理解

监督降维包括半监督降维以及分类、回归的降维。  

2018-10-29 19:25:59

阅读数:254

评论数:0

【IM】关于半监督学习的理解

基于流形假设的半监督学习:假定输入概率密度p(x)和条件概率密度p(y|x)之间具有某种关联,估计p(x)辅助对p(y|x)的估计以提升精度。流形假设,即输入数据只出现在某个流形上,输出则在该流形上平滑变化。 拉普拉斯正则化是把输入数据在流形上进行函数平滑的半监督学习算法,结合拉普拉斯矩阵(L=D...

2018-10-29 11:04:57

阅读数:125

评论数:0

【IM】关于在线学习(被动攻击学习和适应正则化学习)的理解

在线学习算法对于有限内存来说、面对大数据时具有重要作用,显然重要是优化求解过程的在线性,这里理解调整梯度下降量的被动攻击学习以及鲁棒性在线学习方法适应正则化学习。 ...

2018-10-29 10:03:44

阅读数:164

评论数:0

【IM】关于聚类评价算法的理解

谱聚类是基于拉普拉斯特征映射的k近邻聚类,matlab代码如下: >> n=500;c=2;k=10;t=randperm(n);a=linspace(0,2*pi,n/2)'; >> x=[a.*cos(...

2018-10-26 16:25:25

阅读数:125

评论数:0

【IM】关于无监督降维的理解

在无监督学习中,异常检测、降维、聚类是三个主要场景,本文就无监督降维做了一个分类和基本介绍,需要扩展补充很多知识点。 拉普拉斯特征映射的思想在谱聚类中也有应用。...

2018-10-23 14:43:20

阅读数:53

评论数:0

【IM】关于条件随机场CRF的理解

条件随机场:(Conditional Random Filed,CRF),序列数据分类模型,组合连续的两种模式以识别整体模式序列。 序列数据分类的场景:词性标注、图像说明等,其基础模型是Logistic思想、求解思路是梯度下降+动态规划。 更多关于CRF及其变异模型,有待深入。...

2018-10-16 10:33:02

阅读数:85

评论数:0

【IM】关于集成学习Bagging和Boosting的理解

集成学习在各大比赛中非常流程,如XGboost、LGBM等,对其基学习器决策树及其剪枝等,可参考: https://blog.csdn.net/fjssharpsword/article/details/54861274 集成学习可参考: https://blog.csdn.net/fjss...

2018-10-11 11:35:02

阅读数:58

评论数:0

【IM】关于支持向量机分类的理解

支持向量机分类的理解核心就是核方法以及二次规划最优求解。 SVM相关博文: https://blog.csdn.net/fjssharpsword/article/details/79965283 https://blog.csdn.net/fjssharpsword/article/det...

2018-10-10 16:20:02

阅读数:47

评论数:0

【IM】关于稀疏学习和鲁棒学习的理解

主要是理解L1和L2正则化,鲁棒学习中也是围绕L1残差和L2方差损失来提出模型。关于鲁棒学习,对于异常值的鲁棒性有两方面:一是对现有样本中异常点的鲁棒性;二是对新增异常点的鲁棒性。 关于L1和L2正则化,参考如下博文理解: https://blog.csdn.net/fjssharpsword...

2018-10-08 18:07:15

阅读数:76

评论数:0

【IM】关于最小二乘法及约束的理解

最小二乘法是对以实向量x为输入、实数y为输出的函数y=f(x)的学习问题。对于机器学习来说,关键就是构建一个f模型,然后设定求解目标,通过训练样本来求解。一个机器学习算法,关系模型、求解目标、求解方法。 这里的重点是如何理解正交投影矩阵在SVD中的去噪解释,暂时没有更深入分享,后面有这方...

2018-09-30 19:25:30

阅读数:200

评论数:0

【IM】关于参数模型和核模型的理解

学习模型按照参数与维度还是样本相关,可分为参数模型(参数与维度相关)和核模型(参数与样本相关)。 对于核模型的核方法或核函数说明有如下博文,参考《图解机器学习》理解如下两页。 https://blog.csdn.net/fjssharpsword/article/details/8166160...

2018-09-28 14:22:28

阅读数:109

评论数:0

【IM】从贝叶斯角度理解生成式和判别式及参数估计方法

生成式和判别式及参数估计方法,综合如下博文,参考《图解机器学习》一书,有如下两页理解。 https://blog.csdn.net/fjssharpsword/article/details/79297306 https://blog.csdn.net/fjssharpsword/articl...

2018-09-27 10:07:44

阅读数:57

评论数:0

Kernel Method的理解

kernel method是针对低维线性不可分而提出的一种解决方法,在PRML中有一章节的介绍,对其理解,也是迭代更进的过程。 简单来说,kernel method是一种低维和高维特征空间映射的方法,利用低维内积的函数来表征高维内积,即高维的内积用低维内积的函数来表示,这个低维内积的函数就是ke...

2018-08-14 10:18:09

阅读数:405

评论数:0

参数估计Bayesian方法的困惑点

1、参数估计三种方法 MLE和MAP是点估计,而第三种Bayesian方法则是求期望。 2、期望求解 其中: 这里面的困惑点是分母这一全概率可否作为常数不参与计算。 如此,期望应等同于求解: 如此,用gibbs或em变分求解,就是后验分布(=先验分布+条件分布)。 ...

2018-08-14 09:49:56

阅读数:124

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭