【Deep Learning】Tensorflow实现循环神经网络

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/fjssharpsword/article/details/80053288

RNN Overview

nn

References:

  • Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural Computation 9(8): 1735-1780, 1997.
    """ Recurrent Neural Network.
    A Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
    This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
    Links:
        [Long Short Term Memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
        [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
    Author: Aymeric Damien
    Project: https://github.com/aymericdamien/TensorFlow-Examples/
    """
    
    from __future__ import print_function
    
    import tensorflow as tf
    from tensorflow.contrib import rnn
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    '''
    To classify images using a recurrent neural network, we consider every image
    row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
    handle 28 sequences of 28 steps for every sample.
    '''
    
    # Training Parameters
    learning_rate = 0.001
    training_steps = 10000
    batch_size = 128
    display_step = 200
    
    # Network Parameters
    num_input = 28 # MNIST data input (img shape: 28*28)
    timesteps = 28 # timesteps
    num_hidden = 128 # hidden layer num of features
    num_classes = 10 # MNIST total classes (0-9 digits)
    
    # tf Graph input
    X = tf.placeholder("float", [None, timesteps, num_input])
    Y = tf.placeholder("float", [None, num_classes])
    
    # Define weights
    weights = {
        'out': tf.Variable(tf.random_normal([num_hidden, num_classes]))
    }
    biases = {
        'out': tf.Variable(tf.random_normal([num_classes]))
    }
    
    
    def RNN(x, weights, biases):
    
        # Prepare data shape to match `rnn` function requirements
        # Current data input shape: (batch_size, timesteps, n_input)
        # Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
    
        # Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
        x = tf.unstack(x, timesteps, 1)
    
        # Define a lstm cell with tensorflow
        lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
    
        # Get lstm cell output
        outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
    
        # Linear activation, using rnn inner loop last output
        return tf.matmul(outputs[-1], weights['out']) + biases['out']
    
    logits = RNN(X, weights, biases)
    prediction = tf.nn.softmax(logits)
    
    # Define loss and optimizer
    loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits=logits, labels=Y))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op)
    
    # Evaluate model (with test logits, for dropout to be disabled)
    correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # Initialize the variables (i.e. assign their default value)
    init = tf.global_variables_initializer()
    
    # Start training
    with tf.Session() as sess:
    
        # Run the initializer
        sess.run(init)
    
        for step in range(1, training_steps+1):
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, timesteps, num_input))
            # Run optimization op (backprop)
            sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
            if step % display_step == 0 or step == 1:
                # Calculate batch loss and accuracy
                loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
                                                                     Y: batch_y})
                print("Step " + str(step) + ", Minibatch Loss= " + \
                      "{:.4f}".format(loss) + ", Training Accuracy= " + \
                      "{:.3f}".format(acc))
    
        print("Optimization Finished!")
    
        # Calculate accuracy for 128 mnist test images
        test_len = 128
        test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
        test_label = mnist.test.labels[:test_len]
        print("Testing Accuracy:", \
    sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))

展开阅读全文

没有更多推荐了,返回首页