概率与统计,参数估计(部分)

随机变量分类

  • 离散型随机变量
  • 连续型随机变量

随机变量的矩:
X是一个随机变量对于任何正整数n,定义
E ( X n ) = ∫ p ( x ) x n d x E(X^n)=\int p(x)x^ndx E(Xn)=p(x)xndx

  • 一阶矩:n=1,E(X)期望(原点矩)
  • 二阶矩:n=2, E ( X 2 ) − E ( X ) 2 E(X^2)-E(X)^2 E(X2)E(X)2方差 (中心矩)

特征函数:
ϕ X ( t ) = E ( e i t X ) \phi_X(t)=E(e^{itX}) ϕX(t)=E(eitX)= ∑ n = 0 ∞ E ( X n ) n ! ( i t ) n \sum_{n=0}^{∞}\frac{E(X^n)}{n!} (it)^n n=0n!E(Xn)(it)n

在这里插入图片描述
更多关于特征函数
协方差:(多个随机变量之间的关系)
X,Y为两个独立随机变量,协方差为0
E ( x , y ) = ∫ y ∫ x x y p ( x , y ) d x d y = ∫ y p ( y ) ∫ x p ( x ) d x d y = ∫ y p ( y ) E ( x ) d y = E ( x ) ∫ y p ( y ) d y = E ( x ) E ( y ) { E(x,y)=∫_y∫_xxyp(x,y)dxdy = ∫yp(y)∫xp(x)dxdy = ∫yp(y)E(x)dy =E(x) ∫yp(y)dy =E(x)E(y) } Exy=yxxypxydxdy=ypyxp(x)dxdy=yp(y)E(x)dy=E(x)yp(y)dy=E(x)E(y)

c o v ( x , y ) = E ( x y ) − E ( x ) E ( y ) = 0 { cov(x,y) = E(xy)-E(x)E(y) = 0} cov(x,y)=E(xy)E(x)E(y)=0

x,y的相关系数(夹角cosα)
c o v ( x , y ) / v a r ( x ) v a r ( y ) {cov(x,y)/\sqrt{var(x)var(y)}} covxy/varxvary

概率分布与特征函数的关系:
对于任何X, ϕ x ( t ) 都 存 在 \phi_x(t)都存在 ϕx(t)
ϕ ( 0 ) = E ( e 0 ) = 1 , 且 ∣ ϕ ( t ) ∣ ≤ 1 , ∀ t \phi(0)=E(e^0)=1,且\mid\phi(t)\mid\leq1,\forall t ϕ(0)=E(e0)=1,ϕ(t)1t
ϕ ( t ) 是 一 致 连 续 函 数 \phi(t)是一致连续函数 ϕ(t)
ϕ X ( t ) = ϕ − X ( t ) , 所 以 如 果 X 关 于 中 心 对 称 , 那 么 ϕ X ( t ) 就 是 一 个 实 函 数 \phi_X(t)=\phi_-X(t),所以如果X关于中心对称,那么\phi_X(t)就是一个实函数 ϕX(t)=ϕX(t),XϕX(t)
如 果 X 的 n 阶 矩 存 在 , 那 么 ϕ X ( t ) 至 少 n 阶 可 微 , 并 且 E ( X n ) = ( − i ) n ϕ ( n ) ( 0 ) 如果X的n阶矩存在,那么\phi_X(t)至少n阶可微,并且E(X^n)=(-i)^n\phi^{(n)}(0) XnϕX(t)nE(Xn)=(i)nϕ(n)(0)
如 果 X , Y 是 两 个 独 立 随 机 变 量 , 那 么 ϕ X + Y ( t ) = ϕ X ( t ) ϕ Y ( t ) 如果X,Y是两个独立随机变量,那么\phi_{X+Y}(t)=\phi_X(t)\phi_Y(t) XYϕX+Y(t)=ϕX(t)ϕY(t)
如 果 ϕ X ( t ) = ϕ Y ( t ) , 那 么 X , Y 服 从 同 一 个 分 布 如果\phi_X(t)=\phi_Y(t),那么X,Y服从同一个分布 ϕX(t)=ϕY(t),XY
如 果 X n 是 一 个 随 机 变 量 序 列 , 而 且 ϕ x n ( t ) 逐 点 收 敛 于 一 个 函 数 ϕ ∞ ( t ) , 如 果 ϕ ∞ ( t ) 在 0 处 连 续 , 那 么 存 在 一 个 分 布 X ∞ ( t ) , 使 得 X n 按 分 布 收 敛 于 X ∞ ( t ) 如果{X_n}是一个随机变量序列,而且\phi_{x_n}(t)逐点收敛于一个函数\phi_∞(t),如果\phi_∞(t)在0处连续,那么存在一个分布X_∞(t),使得X_n按分布收敛于X_∞(t) Xnϕxn(t)ϕ(t),ϕ(t)0X(t),使XnX(t)

特殊分布的特征函数:
独 点 分 布 p ( a ) = 1 , ϕ ( t ) = e i a t 独点分布p(a)=1,\phi(t)=e^{iat} p(a)=1,ϕ(t)=eiat
两 点 分 布 p ( − 1 ) = p ( 1 ) = 1 / 2 , ϕ ( t ) = c o s ( t ) 两点分布p(-1)=p(1)=1/2,\phi(t)=cos(t) p(1)=p(1)=1/2,ϕ(t)=cos(t)
正 态 分 布 , 概 率 密 度 函 数 f ( x ) = 1 2 Π e − x 2 2 , ϕ ( t ) = e − t 2 2 正态分布,概率密度函数f(x)=\frac{1}{\sqrt{2}Π}e^{-\frac{x^2}{2}},\phi(t)=e^{-\frac{t^2}{2}} f(x)=2 Π1e2x2,ϕ(t)=e2t2
泊 松 分 布 p ( n ) = e − λ λ n n ! , ϕ ( t ) = e − λ ( 1 − e i t ) 泊松分布p(n)=e^{-\lambda}\frac{\lambda^n}{n!},\phi(t)=e^{-\lambda(1-e^{it})} p(n)=eλn!λnϕ(t)=eλ(1eit)

重要极限:
l i m n → ∞ ( 1 + 1 / n ) n 存 在 , 且 定 义 e = l i m n → ∞ ( 1 + 1 / n ) n , 于 是 定 义 e x = l i m n → ∞ ( 1 + x / n ) n , l i m n → ∞ ( 1 + x / n ) n = l i m n → ∞ [ ( 1 + x / n ) n / x ] x = l i m n → ∞ [ ( 1 + 1 / m ) m ] x = e x {lim_{n\to\infty} (1+1/n)^n }存在,且定义e = lim_{n\to\infty} (1+1/n)^n,于是定义e^x = lim_{n\to\infty} (1+x/n)^n, lim_{n\to\infty} (1+x/n)^n = lim_{n\to\infty} [(1+x/n)^{n/x}]^x = lim_{n\to\infty} [(1+1/m)^m]^x = e^x limn(1+1/n)ne=limn(1+1/n)nex=limn(1+x/n)nlimn(1+x/n)n=limn[(1+x/n)n/x]x=limn[(1+1/m)m]x=ex

大数定律:

平均值收敛于期望

X是随机变量,μ是X的期望, σ \sigma σ是X的方差, { X k } k = 1 ∞ \{X_k\}_{k=1}^{∞} {Xk}k=1

是服从X的独立同分布随机变量,那么 X ‾ n = ∑ k = 1 n X k n \overline{X}_n=\frac{\sum_{k=1}^{n}X_k}{n} Xn=nk=1nXk依概率收敛于μ。也就是说对于任何 ε \varepsilon ε>0有
lim ⁡ x → ∞ P ( ∣ X ‾ n − μ ∣ > ε ) = 0 \lim_{x\to\infty}P(\mid\overline{X}_n-μ\mid>\varepsilon)=0 xlimP(Xnμ>ε)=0
因为X具有一阶矩,所以特征函数 ϕ X ( t ) 存 在 一 阶 泰 勒 展 开 ϕ X ( t ) = 1 + i μ t + o ( t ) \phi_X(t)存在一阶泰勒展开\phi_X(t)=1+iμt+o(t) ϕX(t)ϕX(t)=1+iμt+o(t),于是
ϕ X ‾ ( t ) = E ( e x p ( i t ∑ i = 1 n x i n ) ) = ∏ i = 1 n E ( e x p ( i t X / n ) ) = ( 1 + i μ t / n + o ( t / n ) n ) \phi_{\overline{X}}(t)=E(exp(it\frac{\sum_{i=1}^{n}x_i}{n}))=\prod_{i=1}^{n}E(exp(itX/n))=(1+iμt/n+o(t/n)^n) ϕX(t)=E(exp(itni=1nxi))=i=1nE(exp(itX/n))=(1+iμt/n+o(t/n)n)
于是
lim ⁡ n → ∞ ϕ X ‾ ( t ) = lim ⁡ n → ∞ ( 1 + i μ t / n + o ( t / n ) ) n \lim_{n\to\infty}\phi_{\overline{X}}(t)=\lim_{n\to\infty}(1+iμt/n+o(t/n))^n nlimϕX(t)=nlim(1+iμt/n+o(t/n))n
这就是独点分布的特征函数,所以 X ‾ \overline{X} X按分布收敛于独点分布。
收敛于一个常数,因为 lim ⁡ x → ∞ P ( ∣ X ‾ n − μ ∣ > ε ) = 0 \lim_{x\to\infty}P(\mid\overline{X}_n-μ\mid>\varepsilon)=0 xlimP(Xnμ>ε)=0
X ‾ \overline{X} X收敛于一个常数,所以 X ‾ \overline{X} X=μ,也就是验证了
平均值收敛于期望值

中心极限定理:

X是随机变量, ϕ ( X ) \phi(X) ϕ(X)是X的特征函数, { X k } k = 1 ∞ \{X_k\}_{k=1}^{∞} {Xk}k=1

是服从X的独立同分布随机变量,那么
服从正态分布
z n = x σ ( x n ‾ μ ) z_n = \frac{\sqrt{x}}{\sigma}(\overline{x_n} μ) zn=σx (xnμ)
依分布收敛于正态分布N(0,1)
也就是说对于任何 ε \varepsilon ε>0有
lim ⁡ n → ∞ P ( Z n < z ) = Φ ( z ) , ∀ z \lim_{n\to\infty}P(Z_n<z)=\Phi(z),\forall z nlimP(Znz)=Φ(z),z
其中 Φ \Phi Φ是标准正态分布的分布函数。

x的二阶泰勒展开式
ϕ x ( t ) = 1 + i μ t − σ 2 t 2 + o ( t 2 ) {\phi x(t) = 1 + iμt - \frac{{\sigma}}{2} t^2 + o(t^2) } ϕxt=1+iμt2σt2+o(t2)
令 Y = ( x − μ ) / σ 令 Y = (x-μ)/\sigma Y=xμ)/σ
E ( Y ) = E [ x − μ σ ] = 1 σ E ( x − μ ) = 1 σ ( E ( X ) − μ = 0 {E(Y)= E[\frac{{x-μ}}{\sigma}] =\frac{{1}}{\sigma}E(x-μ) = \frac{{1}}{\sigma}(E(X)-μ} =0 EY=E[σxμ]=σ1E(xμ)=σ1(E(X)μ=0
E ( Y 2 ) = E ( x − μ σ ) 2 = 1 σ 2 [ E ( X 2 ) − 2 μ E ( x ) + μ 2 ] = 1 σ 2 [ E ( X 2 ) − μ 2 ] = 1 σ 2 σ 2 = 1 {E(Y^2) = E(\frac{{x-μ}}{\sigma})^2 =\frac{{1}}{\sigma^2}[E(X^2) -2μE(x)+μ^2]= \frac{{1}}{\sigma^2}[E(X^2)-μ^2]}= \frac{{1}}{\sigma^2}\sigma^2=1 E(Y2)=E(σxμ)2=σ21[E(X2)2μE(x)+μ2]=σ21[E(X2)μ2]=σ21σ2=1
则, E ( Y ) = 0 , E ( Y 2 ) = 1 , 于 是 有 E(Y)=0,E(Y^2)=1,于是有 E(Y)=0,E(Y2)=1,
ϕ Y ( t ) = 1 − 1 2 t 2 + o ( t 2 ) \phi_Y(t)=1- \frac{1}{2}t^2+o(t^2) ϕY(t)=121t2+o(t2)
因为 Z n = n Y ‾ Z_n = {\sqrt{n}}\overline{Y} Zn=n Y,所以
ϕ Z n ( t ) = E ( e x p ( i t ∑ i = 1 n Y i / n ) ) = ( 1 − 1 2 n t 2 + o ( t 2 / n ) ) n \phi_{Z_n(t)}=E(exp(it\sum_{i=1}^{n}Y_i/\sqrt{n}))=(1-\frac{1}{2n}t^2+o(t^2/n))^n ϕZn(t)=E(exp(iti=1nYi/n ))=(12n1t2+o(t2/n))n
Z n = n ∑ i = 1 n Y i , 最 后 就 是 1 n Y i , 把 ϕ Y ( t ) 的 t 换 成 t / n 就 是 Z n 的 函 数 方 程 Z_n =\sqrt{n}\sum_{i=1}^{n}Y_i,最后就是\frac{1}{\sqrt{n}}Y_i,把\phi_Y(t) 的t换成t/\sqrt{n}就是Z_n的函数方程 Zn=n i=1nYi,n 1Yi,ϕY(t)tt/n Zn
于是
lim ⁡ n → ∞ ϕ z n ( t ) = lim ⁡ n → ∞ ( 1 − t 2 2 n + o ( t 2 / n ) ) n = e − 1 2 t 2 \lim_{n\to\infty}\phi_{z_n}(t)=\lim_{n\to\infty}(1- \frac{t^2}{2n}+o(t^2/n))^n=e^{-\frac{1}{2}t^2} nlimϕzn(t)=nlim(12nt2+o(t2/n))n=e21t2
是一个正态分布的特征函数,所以 Z n Z_n Zn按分布收敛于正态分布。

参数估计

  • 点估计
    矩估计
    极大似然估计
  • 区间估计

点估计性质:

相合性

:当样本数量趋于无穷时,估计量收敛于参数真实值。
例:当我们求解参数 θ \theta θ的方程时,为什么最大值就是参数的值?
θ 0 \theta_0 θ0,求极大值,就是要证明 θ 0 \theta_0 θ0就是极大值。
最大化参数函数方程 l x ( θ ) l_x(\theta) lx(θ),也就是最大化 1 n l x ( θ ) { \frac{1}{n}l_x(\theta)} n1lx(θ)是一样的。
1 n l x ( θ ) = 1 n ∑ i = 1 n l x i ( θ ) = 1 n ∑ i = 1 n l n ( f θ ( x i ) ) {{ \frac{1}{n}l_x(\theta)}=\frac{1}{n}\sum_{i=1}^{n}l_{x_i}(\theta)= \frac{1}{n}\sum_{i=1}^{n}l_n(f_\theta(x_i))} n1lx(θ)=n1i=1nlxiθ=n1i=1nln(fθ(xi))
这个无穷求和就收敛于期望(大数定律)
E ( l n ( f θ ( x ) ) ) = ∫ x l n ( f θ ( x ) ) f θ 0 ( x ) d x E(l_n(f_\theta(x)))=∫_xl_n(f_\theta(x))f_{\theta_0}(x)dx Eln(fθ(x))=xln(fθ(x))fθ0(x)dx
f θ ( x ) 是 一 个 函 数 , f θ 0 ( x ) 是 个 值 f_\theta(x)是一个函数,f_{\theta_0}(x)是个值 fθ(x)fθ0(x)
θ ^ \hat{\theta} θ^ 1 n l x ( θ ) \frac{1}{n}l_x(\theta) n1lx(θ)的极大值点,所以 l i m θ ^ 收 敛 于 E ( l n ( f θ ( x ) ) ) 的 极 大 值 点 lim\hat{\theta}收敛于 E(l_n(f_\theta(x)))的极大值点 limθ^Eln(fθ(x))
所以我们只需要证明 θ 0 \theta_0 θ0确定是 E ( l n ( f θ ( x ) ) ) E(l_n(f_\theta(x))) Eln(fθ(x))的极大值点,因为 l n ( x ) 是 个 凹 函 数 , 根 据 琴 生 不 等 式 我 们 有 : l_n(x)是个凹函数,根据琴生不等式我们有: ln(x)
∫ x l n ( f θ ( x ) ) f θ 0 ( x ) d x − ∫ x l n ( f θ 0 ( x ) ) f θ 0 ( x ) d x = ∫ x l n ( f θ ( x ) / f θ 0 ( x ) ) f θ 0 ( x ) d x ≤ l n ( ∫ x f θ ( x ) f θ 0 ( x ) f θ 0 ( x ) d x ) = l n ( ∫ x f θ ( x ) d x ) = l n ( 1 ) = 0 {∫_xl_n(f_\theta(x))f_{\theta_0}(x)dx-∫_xl_n(f_{\theta_0}(x))f_{\theta_0} (x)dx}=∫_xl_n(f_\theta(x)/f{\theta_0}(x))f_{\theta_0}(x)dx \leq l_n(∫_x \frac{f_\theta(x)}{f_{\theta_0}(x)}f_{\theta_0}(x)dx)=ln(∫_xf_\theta(x)dx)=ln(1)=0 xln(fθ(x))fθ0(x)dxxln(fθ0(x))fθ0(x)dx=xln(fθ(x)/fθ0(x))fθ0(x)dxln(xfθ0(x)fθ(x)fθ0(x)dx)=ln(xfθ(x)dx)=ln(1)=0
所以: E ( l n ( f θ ( x ) ) ) − E ( l n ( f θ 0 ( x ) ) ) ≤ 0 E(l_n(f_\theta(x)))-E(l_n(f_{\theta_0}(x)))\leq 0 Eln(fθ(x))Eln(fθ0(x))0
θ 0 就 是 E ( l n ( f θ ( x ) ) 的 极 大 值 点 \theta_0就是E(l_n(f_\theta(x))的极大值点 θ0Eln(fθ(x))

所以求解参数方程的极大值就是求参数的真实值。

无偏性

:对于有限的样本,估计量所符合的分布之期望等于参数真实值。
例:方差的估计:
E ( 1 n ∑ i = 1 n ( x i − x ‾ ) 2 ) = E ( 1 n ∑ i = 1 n ( x i − μ + μ − x ‾ ) 2 ) = E ( 1 n ∑ i = 1 n ( x i − μ ) 2 ) − E ( ( μ − x ‾ ) 2 ) = E ( ( x i − μ ) 2 ) − E ( ( μ − x ‾ ) 2 ) = σ 2 − v a r ( ( x ‾ ) ) ≤ σ 2 E( \frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2)=E( \frac{1}{n}\sum_{i=1}^{n}(x_i-μ+μ-\overline{x})^2)=E( \frac{1}{n}\sum_{i=1}^{n}(x_i-μ)^2)-E((μ-\overline{x})^2)=E((x_i-μ)^2)-E((μ-\overline{x})^2)=\sigma^2 -var((\overline{x}))\leq\sigma^2 En1i=1n(xix)2=E(n1i=1n(xiμ+μx)2)=En1i=1n(xiμ2)E((μx)2)=E((xiμ)2)E((μx)2)=σ2var((x))σ2
E ( ( x i − μ ) 2 ) = E ( x i 2 − 2 μ x i + μ 2 ) = E ( x i 2 ) − 2 μ E ( x i ) + μ 2 = E ( x ) 2 − μ 2 = σ 2 E((x_i-μ)^2) = E(x_i^2-2μx_i +μ^2)=E(x_i^2)-2μE(x_i)+μ^2=E(x)^2-μ2=\sigma^2 E((xiμ)2)=E(xi22μxi+μ2)=E(xi2)2μE(xi)+μ2=E(x)2μ2=σ2
E ( 1 n ∑ i = 1 n ( x i − μ + μ − x ‾ ) 2 n ) = ∑ i = 1 n ( x i − μ ) 2 n + ∑ i = 1 n ( μ − x ‾ ) 2 n + ∑ i = 1 n 2 ( x i − μ ) ( μ − x ‾ ) n = E ( 1 n ∑ i = 1 n ( x i − μ ) 2 ) + E ( ( μ − x ‾ ) 2 ) + ( − 2 E ( μ − x ‾ ) 2 ) E( \frac{1}{n}\sum_{i=1}^{n}\frac{(x_i-μ+μ-\overline{x})^2}{n})=\sum_{i=1}^{n}\frac{(x_i-μ)^2}{n}+\sum_{i=1}^{n}\frac{(μ-\overline{x})^2}{n}+\sum_{i=1}^{n}\frac{2(x_i-μ)(μ-\overline{x})}{n}= E(\frac{1}{n}\sum_{i=1}^{n}(x_i-μ)^2)+E((μ-\overline{x})^2)+(-2E(μ-\overline{x})^2) E(n1i=1nn(xiμ+μx)2)=i=1nn(xiμ)2+i=1nn(μx)2+i=1nn2(xiμ)(μx)=E(n1i=1n(xiμ)2)+E((μx)2)+(2E(μx)2)
E ( 2 ( μ − x ‾ ) ∑ i = 1 n ( ( x i − μ ) n ) = E ( 2 ( μ − x ‾ ) ( x ‾ − μ ) ) = − 2 E ( μ − x ‾ ) 2 E(2(μ-\overline{x})\sum_{i=1}^{n}( \frac{(x_i-μ)}{n})=E(2(μ-\overline{x})(\overline{x}-μ))=-2E(μ-\overline{x})^2 E(2(μx)i=1n(n(xiμ))=E(2(μx)(xμ))=2E(μx)2
所以我们倾向于低估 σ 2 \sigma^2 σ2,那么我们低估的这个值 v a r ( ( x ‾ ) ) var((\overline{x})) var((x))等于多少?

Y i = X i − μ Y_i=X_i-μ Yi=Xiμ,那么 x ‾ − μ = Y ‾ \overline{x}-μ=\overline{Y} xμ=Y,所以 E ( ( μ − x ‾ ) 2 ) = E ( ( Y ‾ ) 2 ) E((μ-\overline{x})^2)=E((\overline{Y})^2) E((μx)2)=E((Y)2)
Y的特征函数是
ϕ Y ( t ) = e x p ( − t 2 σ 2 2 ) \phi _Y(t)=exp(\frac{-t^2\sigma^2}{2}) ϕY(t)=exp(2t2σ2)
所以
ϕ Y ‾ ( t ) = ( e x p ( − t 2 σ 2 2 n 2 ) ) n = e x p ( − t 2 ( σ / n ) 2 2 ) \phi _{\overline{Y}}(t)=(exp( \frac{-t^2\sigma^2}{2n^2}))^n=exp( \frac{-t^2(\sigma/\sqrt{n})^2}{2}) ϕY(t)=(exp(2n2t2σ2))n=exp(2t2(σ/n )2)
ϕ Y ‾ ( t ) = E ( e x p ( i t Y ‾ ) ) = E ( e ∑ k = 1 n Y k n i t ) = E ( ∏ k = 1 n e Y k n i t ) = ∏ k = 1 n E ( e Y k n i t ) = ∏ k = 1 n Φ Y k ( t n ) = ( ϕ Y ( ( t n ) ) n \phi _{\overline{Y}}(t)=E(exp(it\overline{Y}))=E(e^{\sum_{k=1}^{n}\frac{Y_k}{n}it})=E(\prod_{k=1}^ne^{\frac{Y_k}{n}it})=\prod_{k=1}^nE(e^{\frac{Y_k}{n}it})=\prod_{k=1}^n\Phi _{Y_k}(\frac{t}{n})=(\phi _Y((\frac{t}{n}))^n ϕY(t)=E(exp(itY))=E(ek=1nnYkit)=E(k=1nenYkit)=k=1nE(enYkit)=k=1nΦYk(nt)=(ϕY((nt))n
于是:
v a r ( x ‾ ) = v a r ( Y ‾ ) = σ 2 / n var(\overline{x})=var(\overline{Y})=\sigma^2/n var(x)=var(Y)=σ2/n,所以
E ( 1 n ∑ i = 1 n ( x i − x ‾ ) 2 = σ 2 − v a r ( ( x ‾ ) ) = σ 2 − σ 2 / n = n − 1 n σ 2 E(\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2=\sigma^2 -var((\overline{x}))=\sigma^2-\sigma^2/n=\frac{n-1}{n}\sigma^2 E(n1i=1n(xix)2=σ2var((x))=σ2σ2/n=nn1σ2
因此, 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 才 是 σ 2 的 无 偏 估 计 值 。 \frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2才是\sigma^2的无偏估计值。 n11i=1n(xix)2σ2

另一种方法:中误差
假设误差:
Δ i = l i − X … \Delta_i=l_i-X\dots Δi=liX
将各式取和再除以次数n,
[ Δ ] n = l n − X \frac{[\Delta]}{n}=\frac{l}{n}-X n[Δ]=nlX,
然后平方: [ Δ Δ ] n 2 = ( x ‾ − x ) 2 \frac{[\Delta\Delta]}{{n}^2}=(\overline{x}-x)^2 n2[ΔΔ]=(xx)2
改正数: v i = x ‾ − l i … v_i=\overline{x}-l_i\dots vi=xli

由于①②得:
Δ i = − v i + ( x ‾ − x ) \Delta_i=-v_i+(\overline{x}-x) Δi=vi+(xx)

[ Δ Δ ] n = [ v v ] n + 2 ( x ‾ − x ) [ v ] n + ( x ‾ − x ) 2 \frac{[\Delta\Delta]}{{n}}=\frac{[vv]}{{n}}+\frac{2(\overline{x}-x)[v]}{n}+(\overline{x}-x)^2 n[ΔΔ]=n[vv]+n2(xx)[v]+(xx)2

由于改正值之和为0, [ v ] = 0 [v]=0 [v]=0

[ Δ Δ ] n 2 = ( x ‾ − x ) 2 \frac{[\Delta\Delta]}{{n}^2}=(\overline{x}-x)^2 n2[ΔΔ]=(xx)2

[ Δ Δ ] n = [ v v ] n + ( x ‾ − x ) 2 \frac{[\Delta\Delta]}{{n}}=\frac{[vv]}{{n}}+(\overline{x}-x)^2 n[ΔΔ]=n[vv]+(xx)2

[ Δ Δ ] n = [ v v ] n + [ Δ Δ ] n 2 \frac{[\Delta\Delta]}{{n}}=\frac{[vv]}{{n}}+\frac{[\Delta\Delta]}{{n}^2} n[ΔΔ]=n[vv]+n2[ΔΔ]

[ Δ Δ ] n − [ Δ Δ ] n 2 = [ v v ] n \frac{[\Delta\Delta]}{{n}}-\frac{[\Delta\Delta]}{{n}^2}=\frac{[vv]}{{n}} n[ΔΔ]n2[ΔΔ]=n[vv]

n [ Δ Δ ] n 2 − [ Δ Δ ] n 2 = [ v v ] n \frac{n[\Delta\Delta]}{{n}^2}-\frac{[\Delta\Delta]}{{n}^2}=\frac{[vv]}{{n}} n2n[ΔΔ]n2[ΔΔ]=n[vv]

( n − 1 ) [ Δ Δ ] n 2 = [ v v ] n \frac{(n-1)[\Delta\Delta]}{{n}^2}=\frac{[vv]}{{n}} n2(n1)[ΔΔ]=n[vv]

[ Δ Δ ] n = [ v v ] n − 1 \frac{[\Delta\Delta]}{{n}}=\frac{[vv]}{{n-1}} n[ΔΔ]=n1[vv]

m 2 = [ v v ] n − 1 m^2=\frac{[vv]}{{n-1}} m2=n1[vv]

m = [ v v ] n − 1 m=\sqrt{\frac{[vv]}{{n-1}}} m=n1[vv]

有效性

:如果两个参数估计量 θ ^ , θ ˇ \hat{\theta},\check{\theta} θ^θˇ既是相合的,又是无偏的,那么他们两个中方差较小的那一个比较好,如果 v a r ( θ ^ ) ≥ v a r ( θ ˇ ) var(\hat{\theta}) \geq var(\check{\theta}) var(θ^)var(θˇ),那么我们就认为 θ ˇ \check{\theta} θˇ比较好。
例:
x 1 … … x n x_1\dots\dots x_n x1xn,来自均值为μ,方差为 σ 2 \sigma^2 σ2的总体分布的简单样本, ω 1 … … ω n \omega_1\dots \dots \omega_n ω1ωn为已知的非负权值,且满足 ∑ ω i = 1 \sum \omega_i=1 ωi=1,试比较μ两个估计 x ‾ 和 ∑ i = 1 n ω i 的 大 小 \overline{x}和\sum_{i=1}^{n}\omega_i的大小 xi=1nωi
因为 v a r ( x ‾ ) = σ 2 n , v a r ( ∑ ω i x i ) = ∑ i = 1 n ω i 2 σ 2 var(\overline{x})=\frac{\sigma^2}{n},var(\sum\omega_ix_i )=\sum_{i=1}^{n}\omega_i^2\sigma^2 var(x)=nσ2,var(ωixi)=i=1nωi2σ2,也就是求 1 n ≤ ∑ i = 1 n ω i 2 \frac{1}{n}\leq\sum_{i=1}^{n}\omega_i^2 n1i=1nωi2,由于柯西不等式: ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 ≥ ( ∑ i = 1 n a i b i ) 2 \sum_{i=1}^{n}a_i^2\sum_{i=1}^{n}b_i^2\geq(\sum_{i=1}^{n}a_ib_i)^2 i=1nai2i=1nbi2(i=1naibi)2,令 a i = 1 , b i = ω i a_i=1,b_i=\omega_i ai=1,bi=ωi, ( 1 + ⋯ + 1 ) ( ω 1 2 + ⋯ + ω n 2 ) ≥ ( ω 1 + ⋯ + ω n ) 2 (1+\dots +1)(\omega_1^2+\dots+\omega_n^2)\geq(\omega_1+\dots+\omega_n)^2 (1++1)(ω12++ωn2)(ω1++ωn)2
n ∑ ω i 2 ≥ 1 ( 权 重 之 和 为 1 ) n\sum\omega_i^2\geq1(权重之和为1) nωi21(1)
所以: ∑ ω i 2 ≥ 1 n \sum\omega_i^2\geq\frac{1}{n} ωi2n1,也就说明了 v a r ( x ‾ ) 是 更 好 的 var(\overline{x})是更好的 var(x)

渐进正态性

当样本趋于无穷时,去中心化去量纲化的估计量符合标准正态分布。

置信区间估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值