知识图谱/知识库问答论文整理(含可用代码、数据集)

https://github.com/BshoterJ/awesome-kgqa

https://blog.csdn.net/Ljuice/article/details/107980180

知识图谱/知识库问答论文整理(含可用代码、数据集)

近期开始涉猎知识库问答,这会是我第二篇论文的起始点,同时也将会是我的毕业设计。 因此,对知识库问答的相关论文进行了初步的整理,主要来自近两年的ACL、AAAI、EMNLP、IJCAI等顶会的论文,进一步的,我专门挑了有公开代码和数据集的论文放上来。同时本人尝试从这些论文里找突破口,有意者可以多多学习交流~

1、Improving Multi-hop Question Answering over Knowledge Graphs using knowledge base embedding (2020 ACL) [code]

KG由于一些缺失的链接(missing links)而成为不完整的KG,给多跳(multi-hop )KGQA带来巨大挑战。已有研究利用知识图嵌入(KB Embeddings)对缺失的链接进行预测,以缓解KG稀疏性。但是这些研究并没有直接针对多跳问题的缺陷,对此,提出EmbedKGQA模型,利用KG嵌入来解决多条问答。
实验取得SOTA的表明,表明该方案可利用KG嵌入的链接预测属性(link prediction properties)缓解KG不完整性带来的问题。

2、Query Graph Generation for Answering Multi-hop Complex Questions_ from Knowledge Bases (2020 ACL) [code]

针对以往KBQA在复杂问题的解决上通常将“问题约束(constraints)”和“问题多跳(multi-hop)关系”分开解决的现象,提出了一种改进的分级查询图生成方法。
具体地,在建立关系路径的同时加入约束和扩展关系路径,而不是只在建立关系路径之后再添加约束。
实验结果表明,在三个QA数据集上取得SOTA的表现。

3、Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering (2020AAAI) [code]

将常识引入开放域对话系统仍是神经网络方案的一个挑战。
对此,提出创新的知识感知对话生成模型(TransDG),该模型将知识库问答任务中的问题表示和知识匹配能力转化为有利于对话生成的话语理解和事实知识选择。此外,还提出回复导向注意力和多步解码策略,以此引导模型专注于问题生成的相关特征上。
值得注意的是,此篇工作本质是生成更具“感知力”的话语,并非直接从知识库得到答案作为结果。
因此其评估指标为“perplexity困惑度”和“BLEU”

4、SPARQA: Skeleton-Based Semantic Parsing for Complex Questions over Knowledge Bases (2020AAAI) [code]

如今KBQA的语义解析方法多依赖于"syntactic parse语法解析",这对于长而复杂的问题(question)来说不足应对。
对此,提出一种新型的语法框架来表示复杂问题的高级结构(high-level
structure)。这是一种结合了bert解析算法的粗粒度表达方式,具有轻量化的特点。然后,为对齐(alight)问题(解析)结构,提出结合了句子粒度和词粒度级别的语义得分的多策略方法来对最终的查询进行排名(rank)。

5、Formal Query Building with Query Structure Prediction for Complex Question Answering over Knowledge Base (2020 IJCAI) [code]

形式化查询构建(Formal query building)是KBQA的重要部分。最近的方案多以状态转移策略(state-transition strategy)对候选查询进行排序。
然而,以上策略忽略了查询的结构,容易产生大量的噪音查询(noisy queries)。(具体表现为:这些噪声查询具有错误的结构,但它们的组成部分与问题有很高的相似性)
对此,提出新型的形式化查询构建方法。该法由两阶段构成:1 预测待回答问题对应的查询结构,并利用该结构约束(constrain)候选查询的生成。具体地,这一步中提出创新的图生成框架来进行预测,并设计了encoder-decoder模型对预定操作的参数进行预测。2 采用跟前人研究一致的方法对候选查询进行排序。
实现结果表明,在CWQ数据集上,取得SOTA表现;在WebQ(simpleQuestion)上,取得具竞争力(competitive)的表现。

6、Retrieve, Program, Repeat: Complex Knowledge Base Question Answering via Alternate Meta-learning (2020 IJCAI) [code]

知识库复杂问题的回答(CQA),通常是以程序-解释器(programmer-interpreter)的方法产生答案。与该类似的元学习(meta-learning)能够让programmer适应未见问题(unseen questions)从而解决分布偏差。虽已有研究员采用了此方案,然而,现有方案仍以大量常见问题的人工标记作为代价,冗余而昂贵。并且有两个缺陷:1 采用的是强迫方式(teacher forcing approach),此法会增加收集每个问题对应annotations的过程中的负担;2 检索器(retriever)是单独分开训练的; 对此,提出在弱监督条件下(weak supervision),利用programmer交替自动学习检索模型,即利用meta-learning机制联合优化retriever和Programmar的创新方案。
在CQA数据集中取得SOTA的表现。

7、Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question Answering (2019 AAAI)

KBQA和AS(答案选择)作为QA领域的两个重要子任务,通常被研究者独立研究解决。现有对两者进行多任务学习(MTL)的方法中,通常分为两部分:任务指定层(task-specific layer)和共享层(shared layer),忽略了两个层之间的内在联系(interrelation),以及不同任务之间的相互作用(interaction)。
对此,提出利用MTL对两个任务同步解决,通过引入不同角度的多视角注意力(multi-view attention)使任务之间产生作用(interaction),不仅如此,新方案还能够学习到更全面的句子表征。
实验结果显示,多任务联合学习的表现远好于单任务学习,可取得SOTA表现。并且,多视角注意力的方案有效改善了表示学习的总体性能。

8、Learning Representation Mapping for Relation Detection in Knowledge Base Question Answering (2019 ACL) [code]

针对训练集中未出现过的关系(unseen relations),提出基于已学习的关系向量来对已知关系和未知关系进行表示映射(representation mapping),并提出采用对抗性(Adversarial)和重构性(Reconstruction)目标来改善训练过程。为适应任务所需环境,重构了SimpleQuestion数据集(SQB)。
在WQB数据集上的结果显示,能够提升对零射(zero-shot/unseen)关系的识别准确度。

9、Knowledge Graph Embedding Based Question Answering (2019 WSDM) [code]

实体名称和部分名称的模糊性使得可能的答案数量很多。
对此,提出基于知识图谱嵌入的QA框架。该框架不直接推理答案的头实体和谓词,而是通过联合恢复头实体、谓词和尾实体在词嵌入空间的表示来合成问题的答案。
其中设计了联合距离度量(joint distance metric)作为每个候选之间的距离,最小距离的候选项即为答案

10、Bidirectional Attentive Memory Networks for Question Answering over Knowledge Bases (2019 NAACL) [code]

针对以往KBQA向量建模的方法忽略了问题和KB之间的关系(entity type, relation paths and context),提出引入双向注意力记忆网络来对问题和KB之间的两通道交互(two-way flow of interactions)进行建模。 该法优势在于,不需要外部链接资源,只需要很少的人工特征,并且由于加入了注意力机制而具备一定的可解释性。
结果显示,提出的不需要外部资源以及仅需少量人工标记特征的模型,与已有的基于信息抽取的方法比较,可取得SOTA表现;与基于语义理解的方法相比,则取得有(competitive)竞争力的表现。

11、Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering (2018 EMNLP) [code]

针对以往容易忽略(复杂问题的)语义解析结构的问题,引入GGNN(门控图神经网络)对带有语义解析的图结构显示地(explicitly)进行建模。包括实体(entity)之间的连接和关系(relation)的方向。
实验结果表明,与没有显示地对结构进行建模的方法相比,可取得SOTA表现。

12、Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text (2018 EMNLP) [code]

如今的开放域问答(Open Domain Question Answering)已从复杂的流水线(pipeline)方案进阶为端到端(End-to-end)方案。现有的端到端方案中,多是单独从文本语料(或已有知识库)中训练神经网络来抽取问题的答案。
对此,提出了一个新的模型,GRAFT-Net,用于从包含文本和知识库实体及关系的特定问题子图中提取答案。大致地,提出了一种新的基于图卷积的神经网络,GRAFT-Net(事实与文本网络之间的关系图),专用于处理知识库事实和文本句子的异构图。
实验结果表明,与仅使用文本或仅使用知识库的方法相比,可取得SOTA表现;即使提出的新框架也仅使用文本或知识库,与已有的SOTA相比,具有竞争力(competitive)。

13、PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text (2019 EMNLP)–这是第12篇的改进,出自同一作者。由于使用了其公司谷歌内部工具,因此没有公开源码

如今开放域问答的一个主流方法,利用维基百科和结构化知识图谱两者的结合来完成问答。目前比较好的思想是早期融合(early fusion)和后期融合(late fusion)的模型,并且已知前者是优于后者的。
然而,这些模型(主要指早期融合(early fusion)的GRAFT-net)在抽取子图时都是采用启发式规则的检索方法,该法并不显得智能化,会产生一些与答案无关或者答案无需利用到的子图。
而本文关注的重点就在于“学会自主检索”,即让模型自己懂得该(从K B KBKB、文本语料)检索什么。文本称此为“ P u l l ” “Pull”“Pull”操作。自然地,另一个重点就在于“如何更好地组合这些异构信息”为单个数据结构来更好的推理出答案。

14、Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader (2019 ACL) [code]

提出端到端的问答模型,用以学习来自不完全KB的答案依据和检索的文本片段。
模型首先从与问题相关的知识库子图中积累实体知识;然后在潜在的空间中重构问题,用已积累的实体知识阅读文本。答案依据和文本片段最后进行聚合,预测答案。在公开数据WebQSP中,在不完整度不同的知识库条件下,稳定提升了对此QA任务的效果。

15、Knowledge Graph Simple Question Answering for Unseen Domains (2019 AKBC) [code]

转化为问题生成任务; 利用远程监督抽取关键字,融入问题生成(QG)框架 (本质针对 未知领域的关系所对应的问答对缺失 的现象)

  • 0
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
知识图谱数据集movie是一个关于电影的知识图谱,包了丰富的电影相关的信息,如电影的名称、导演、演员、上映时间、类型、剧情简介等。这个数据集的目标是为用户提供一个全面且结构化的电影信息平台,帮助用户了解、搜索和选择自己想要观看的电影。 在知识图谱数据集movie中,电影的基本信息以实体的形式呈现,每个电影都有自己的唯一标识符。通过这个标识符,可以查找到电影的详细信息,如导演、演员和上映时间等。此外,在电影的基本信息之上,还有更多与电影相关的信息被添加和链接,构成了一个复杂而完整的知识网络。 利用这个数据集,用户可以进行各种搜索和查询操作。例如,用户可以通过电影名称搜索电影,也可以通过导演或演员的姓名搜索相关作品。用户还可以根据不同的类型或上映时间来筛选电影,以获得自己想要的电影推荐。 在实际应用中,知识图谱数据集movie可以被用于电影推荐系统的开发。通过分析用户的喜好和历史观影记录,结合电影的属性和关系,系统可以为用户提供个性化的电影推荐服务。此外,对于电影评论、影评分析等应用也可以利用这个数据集来提供更加全面的信息支持。 总之,知识图谱数据集movie为用户提供了丰富的电影信息资源,帮助用户更好地了解和选择电影。这个数据集在电影推荐系统、电影评论分析等方面具有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值