视觉SLAM理论入门——(9)视觉里程计之特征点法—ICP

该文详细介绍了如何通过线性代数和非线性优化方法解决3D点集配对的欧氏变换问题。线性代数方法利用最小二乘原理和奇异值分解(SVD)估计旋转矩阵R和平移向量t;非线性优化方法则涉及李代数和雅可比矩阵,寻找误差函数的极小值。文中还讨论了ICP问题可能存在的唯一解或无穷多解的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设有一组配对好的 3D 点

想要找一个欧氏变换 R,t,使得:

这个问题可以用迭代最近点(Iterative Closest Point, ICP)求解。ICP求解方法有两种方法:线性代数求解(SVD)、非线性优化求解

 

1、线性代数求解法

定义第 i 对点的误差为

定义两组点的质心:

构建最小二乘问题,求使误差平方和达到极小的 R,t:

(p_i - p - R(p_i' - p' )) 在求和后为 0,因此目标函数简化为:

上式第一项只与 R,有关,第二项与 R,t有关,因此可以从第一项估计 R,然后代入第二项,令其为 0,求得t

将第一项展开:

上式第一项与 R无关,第二项中 R^TR=I ,因此也与R无关,因此对上式的估计可以简化为对下式的估计:

定义 3x3 矩阵  W = \sum_{i=1}^{n}q'_iq_i{^T}(书上对 W 的定义是这里 W 的转置,最后求解 R 也是这里 R 的转置),为了求 R,对 W 进行SVD分解:

优化问题变为对下面的迹求最大值:

tr(RW)=tr(RU\Sigma V^T)=tr(\Sigma V^T RU)=tr(\Sigma M)

V、R、U都是正交阵,因此 M 也是正交阵,将矩阵展开:

当 W 满秩并且优化问题取最优解(迹最大),这时上式不等号取为等号,那么 m_{ii} = 1,由于 M 是正交阵,从而 M 只能是单位阵,因此:

M = V^T RU = I, R = VU^T

求得 R 后,根据下式求解 t:

 

总结线性代数方法求解过程:

1、计算点对的去质心坐标

2、估计旋转矩阵 R

3、根据下式求解平移向量 t

 

 

2、非线性优化方法

以李代数表达位姿时,目标函数可以写成:

求解雅可比矩阵时需要计算 e 对李代数的导数:

 

ICP问题存在唯一解或无穷多解的情况。在唯一解情况下,只要找到极小值解,这个解也是全局最优解,因此求解问题时可以任意选取初值

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值