floatinglong
码龄7年
求更新 关注
提问 私信
  • 博客:150,137
    150,137
    总访问量
  • 143
    原创
  • 83
    粉丝
  • 81
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2018-04-06
博客简介:

floatinglong的博客

查看详细资料
个人成就
  • 获得88次点赞
  • 内容获得24次评论
  • 获得466次收藏
  • 代码片获得820次分享
  • 博客总排名436,932名
创作历程
  • 37篇
    2021年
  • 37篇
    2020年
  • 69篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 环境配置
  • SLAM
    30篇
  • opencv
    1篇
  • ubuntu
    3篇
  • git
    2篇
  • pangolin
    1篇
  • 视频监控系统
  • 流媒体
    1篇
  • uboot
    16篇
  • linux内核
    3篇
  • 根文件系统
    2篇
  • 数据结构及算法
    6篇
  • 蓝桥杯
    4篇
  • linux设备驱动
    30篇
  • ARM
    1篇
  • linux应用程序
    28篇
  • 疑难杂项
    15篇
  • 平衡车
    5篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflow图像处理
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

57人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

视觉SLAM实践入门——(20)视觉里程计之直接法

啊
原创
发布博客 2021.06.07 ·
1106 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

视觉SLAM实践入门——(19)视觉里程计之多层光流法(光流金字塔)

对于单层光流法,多层光流法基于图像金字塔,通过对上层图像使用光流法得到估计值,再将估计值反馈到下层作为计算的初始值,从而解决单层光流法无法估计较大运动等问题
原创
发布博客 2021.05.30 ·
1167 阅读 ·
3 点赞 ·
2 评论 ·
8 收藏

视觉SLAM理论入门——(10)视觉里程计之光流和直接法

1、特征点法的缺点特征点法具有以下缺点:1、关键点的提取与描述子的计算非常耗时2、特征点的数量远小于图像像素数量,只使用特征点丢弃了大部分可能有用的图像信息3、相机有时会运动到特征缺失的地方,往往这些地方没有明显的纹理信息,从而使得特征点数目减少,无法估计运动克服特征点法缺点的思路:1、只计算关键点,不计算描述子。使用光流法跟踪特征点的运动,回避计算和匹配描述子带来的时间2、只计算关键点,不计算描述子。使用直接法计算特征点在下一时刻图像的位置3、不使用特征点,而是根据像.
原创
发布博客 2021.05.24 ·
1283 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

视觉SLAM实践入门——(18)视觉里程计之单层光流法

编译本节代码需要使用 opencv4,安装和使用的注意事项参考https://blog.csdn.net/floatinglong/article/details/117173740对于下面这种找不到CV_GRAY2BGR 的错误,原因在于新版的 opencv 修改了它的名字error: ‘COLOR_GRAY2BGR’ was not declared in this scope将代码中的C...
原创
发布博客 2021.05.30 ·
617 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

ubuntu中安装另一个版本的opencv

cmake 时指定安装路径cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..安装后,opencv 位于 /usr/local/includeopencv-2.4.13 中使用时,在 CMakeLists.txt 中指定opencv库目录set(CMAKE_PREFIX_PATH "/usr/local/includeopencv-2.4.13/")...
原创
发布博客 2021.05.23 ·
210 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

视觉SLAM实践入门——(16)使用SVD求解ICP

啊
原创
发布博客 2021.05.21 ·
625 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

视觉SLAM理论入门——(8)视觉里程计之特征点法—PnP

PnP是求解3D到2D点对运动的方法
原创
发布博客 2021.05.16 ·
1717 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

视觉SLAM实践入门——(10)特征提取和匹配(修复源码中的段错误bug)

啊
原创
发布博客 2021.05.15 ·
1381 阅读 ·
6 点赞 ·
1 评论 ·
15 收藏

为WSL的ubuntu子系统安装图形化界面

WSL只提供黑窗口登录功能,为了使用gui,需要安装gui并且使用远程连接的方式登录更新源sudo apt-get update安装xorgsudo apt-get install xorg安装xfce4sudo apt-get install xfce4安装xrdpsudo apt-get install xrdp设置端口sudo sed -i 's/port=3389/port=3390/g' /etc/xrdp/xrdp.ini设置xsessio
原创
发布博客 2021.05.06 ·
1273 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

视觉SLAM实践入门——(17)使用非线性优化方法求解ICP

啊
原创
发布博客 2021.05.22 ·
1154 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

视觉SLAM实践入门——(15)使用g2o求解PnP

啊
原创
发布博客 2021.05.21 ·
872 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

视觉SLAM实践入门——(14)高斯牛顿法求解PnP

啊
原创
发布博客 2021.05.20 ·
693 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

视觉SLAM实践入门——(13)使用OpenCV的EPnP求解PnP

啊
原创
发布博客 2021.05.19 ·
2051 阅读 ·
2 点赞 ·
0 评论 ·
13 收藏

视觉SLAM实践入门——(12)三角测量

啊
原创
发布博客 2021.05.18 ·
1941 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

视觉SLAM实践入门——(11)用对极约束求解相机运动

啊
原创
发布博客 2021.05.17 ·
1470 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

视觉SLAM实践入门——(8)使用Ceres库进行曲线拟合

11
原创
发布博客 2021.05.13 ·
411 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

视觉SLAM理论入门——(9)视觉里程计之特征点法—ICP

ICP用于解决3D-3D的位姿估计问题。
原创
发布博客 2021.05.21 ·
563 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

视觉SLAM理论入门——(7)视觉里程计之特征点法—对极几何

当采用单目相机,只知道2D像素坐标,需要根据两组2D点估计运动,这时用到了对极几何1、对极约束2、本质矩阵3、单应矩阵
原创
发布博客 2021.05.15 ·
1328 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

视觉SLAM理论入门——(6)视觉里程计之特征点法—特征点

一个SLAM系统可以分为前端和后端,其中前端称为视觉里程计,其作用是根据相邻图像的信息估计出粗略的相机运动,给后端提供较好的初始值视觉里程计的算法主要有两大类:特征点法(主流方法)、直接法1、特征点视觉里程计的核心问题是根据图像估计相机运动。特征点法是从各个图像中选取相同的有代表性的点(相机视角发生少量变化时,这些点保持不变),在这些点的基础上讨论相机位姿估计问题以及这些点的定位问题。在经典SLAM模型中,这些点是路标;在视觉SLAM中,这些点是图像特征数字图像在计算机中以灰度值...
原创
发布博客 2021.04.30 ·
2600 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

视觉SLAM理论入门——(5)非线性优化

即使我们有着高精度的相机,我们得到的数据通常是受各种未知噪声影响的,运动方程和观测方程也只能近似的成立,因此需要研究如何在有噪声的数据中进行准确的状态估计。1、状态估计问题1.1最大后验与最大似然经典 SLAM 模型由一个运动方程和一个观测方程构成其中表示相机位姿,表示传感器输入,表示观测数据,表示路标,和表示噪声,一般认为噪声服从零均值高斯分布~,~运动方程在视觉 SLAM 中没有特殊性,一般讨论观测方程。对于观测方程,希望通过带噪声的数据和,推断位姿和地图(以及它们的概率分布),
原创
发布博客 2021.04.27 ·
1115 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏
加载更多