动态资源供应与水资源管理数据模型解析
1. 动态资源供应相关分析
在通信网络中,节点面临着如何优化利用有限资源的问题。通过数学方法,我们可以探讨节点在不同状态下的资源利用情况。例如,有两个方程能帮助我们得到节点停留在 RI 状态而非进入 I 状态的概率。若节点能够连续 k 次(水平、垂直或倾斜方向)成功降低干扰,它就可以发送或接收数据包。此时,发送数据包的概率为:
[PTx\ packet = \prod_{j=1}^{k} \pi_{11}(\tau + j) = \prod_{j=1}^{k} (p_1 + p_2e^{-(\mu_1+\mu_2)(\tau + j)})]
基于此,我们能够对系统进行规划,以最小化相关节点的等待概率。
在分析节点优化资源利用的过程中,还引出了一个关键问题:节点做出良好决策需要多少信息?通过对节点所处环境的分析,我们引入了平稳马尔可夫过程,该过程仅依赖于节点的状态。并且,我们假设节点可用于优化资源的参数并非无限,而是有限的,且部分参数相互关联。这意味着我们可以聚焦部分参数,极大地简化问题分析。每个节点在计算和存储能力方面具有不同的特性和属性,但学习技术对所有节点都是相同的。基于马尔可夫过程的强化学习方法能够减轻计算负担,并将该技术推广到网络中的所有节点。
2. 水资源管理的挑战与现状
水是生命赖以生存的资源,但由于气候变化,为地方或国家社区管理水资源变得越来越具挑战性。水的数量和质量受到诸多因素的影响,如降水、干旱严重程度和污染。约一半的世界人口每年至少有一个月难以找到所需的水。
如今,卫星生成的图像辅助了传统的地面测量技术,但数据集分散在多个平台或网站上,这使得为人们和工业规划水
订阅专栏 解锁全文
1648

被折叠的 条评论
为什么被折叠?



