愷风(Wei)的专栏

使用工具、了解工具、创造工具……

我的技术博客索引

我的JAVA相关文章我的Clutter相关博客我的网络通信相关文章我的Linux相关文章我的与kernel module有关的文章我的嵌入式Linux相关文章我的MeeGo/Moblin相关文章我的Andriod开发相关文章我的与编程思想相关的文章我的无限网络文章我的产业生态链和杂谈文章我的四方书...

2009-09-12 22:47:00

阅读数 12239

评论数 12

Java for Web学习笔记(四九):Log(1)log很重要

为何要log 如何写好log,是程序员的必修课。比较通用的方式是Apache的log4j2,和第一个版本log4j相比,log的等级更多,可以准实时在运行过程中修改log登记,适合在发现问题时提升等级,获取更详细的log,而平时采用一般等级。 不推荐使用System.out的方式: 没有等级区分...

2017-04-23 16:01:39

阅读数 1773

评论数 1

[转]讲给普通人听的分布式数据存储

文章来源:http://www.csdn.net/article/2015-11-23/2826307 摘要:简单易懂,十分靠谱.AWS有这么多数据存储选项,针对你正确的工作负载选最适合你的那一个! Neo,这就是让我们心烦的问题 为什么AWS有这么多的数据存储选项?我应该用哪个?这...

2016-01-07 10:50:34

阅读数 1113

评论数 0

公开课读书笔记:无所不在的移动通信(4):畅想未来的移动通信

公开课地址:http://v.163.com/special/cuvocw/yidongtongxin.html 畅想未来的移动通信 从3G看趋势,4G并不遥远和5G路在何方来谈。3G身在其中,毋庸多谈。随着3G无法满足人们移动上网的通信需求、作为标准不同意的区域性通信系统,以及智能化仍需提供,引...

2014-03-18 12:48:54

阅读数 2769

评论数 0

公开课读书笔记:无所不在的移动通信(3)-如何才能守住我

公开课地址:http://v.163.com/special/cuvocw/yidongtongxin.html。主要用于清理一些概念。 如何才能守住我 在移动通信中,存在起伏不定的接收信号,如何保证手机在接受信号差时不掉线,在移动越区时不掉线是关键。 起伏不定的接收信号 在电梯中,可以通过有线泄...

2014-02-03 16:36:48

阅读数 1814

评论数 0

公开课读书笔记:无所不在的移动通信(2) -千万里你追寻着我

公开课地址:http://v.163.com/special/cuvocw/yidongtongxin.html。主要用于清理一些概念。 千万里你追寻着我 增加用户量的有效方式,是减少基站的覆盖范围,采用了小区制蜂窝结果。 MSC(移动交换中心),管理多个基站(通常也成为BTS,基站收发信机)。由...

2014-01-30 15:41:54

阅读数 1549

评论数 0

公开课读书笔记:无所不在的移动通信(1)

公开课地址:http://v.163.com/special/cuvocw/yidongtongxin.html。组要帮忙用于理清一些概念。 无所不在的移动通信 基站(Base Station,BS)到移动台(Mobile Station,MS)有直射波,有反射波,有散射波。在高频的情况下,各波...

2014-01-24 17:26:56

阅读数 2421

评论数 0

Khan公开课 - 概率学习笔记(二)无顺序独立事件、数学符号、Bayes's Law、非公平概率计算

无顺序的独立事件 例如1:flip coins,抛4次,求2次为正面的概率。 所有的可能排列的概率为2×2×2×2,符合要求的events的次数可以罗列出来,但是如果抛的次数多,是不可能的,换种思考方式。 这2个正面放在4个位置,有多少中放法。假设一个证明为HA,另一个为HB,HA可以放4个...

2012-11-03 22:00:29

阅读数 3781

评论数 0

Khan公开课 - 概率学习笔记(一)独立事件、相依事件和排列组合

独立的公平事件概率 对于独立的公平事件,例如fair coin, fair die,当我们事件重复无数次时,符合某个条件的概率如下 注意,这里是equally likely,即发生的几率一样,fair events。 Venn Diagram文氏图 例如一副扑克P(Jack or ...

2012-11-02 14:41:11

阅读数 6994

评论数 0

Khan公开课 - 统计学学习笔记:(十二)逻辑

和逻辑有关,和统计无关,估计是不同课程混了起来。 因果和相关 Eating Breakfast May Beat Teen Obesity通过持续5年时间观察2千多名青少年,提到“早餐规律进食的青少年,饱和脂肪占总卡路里比例较低,同时摄入更多的纤维”,“早餐规律者似乎比不吃早餐的更积极...

2012-10-18 17:38:06

阅读数 2078

评论数 2

Khan公开课 - 统计学学习笔记:(十一)平方之和、F统计

平方之和与自由度之和 这部分实际也是通过χ2为基础进行推导的,但是具体的数学证明不讲,可通过直观案例说明。有一个3(m)×3(n)的列阵。 共9个样本,样本均值为4,也是各组均值的均值,即mean of means。对于sum of square有:总体sum of square = 组内...

2012-10-17 15:40:47

阅读数 3562

评论数 0

Khan公开课 - 统计学学习笔记:(十)Chi-square分布

χ2分布 随机变量X是独立的标准正态分布变量,X~N(0,1),即E(X)=0, Var(X)=1。 Q1=X12,Q1是一个Chi-Square分布,记为,degree of freedom is 1 Q2=X12+ X22,Q2是一个Chi-Square分布,记为 ,degree of ...

2012-10-16 11:22:02

阅读数 9103

评论数 1

Khan公开课 - 统计学学习笔记:(九)线性回归公式,决定系数和协方差

线性回归公式推导 在坐标上分布很多点,这些点可以通过y=mx+b的直线进行近似模拟,如图。最合适的线性回归线(Best fitting regression)就是Error的方差最小,即Square error to the line: SEline最小。我们需要找寻SEline最小时m和b的值...

2012-10-14 17:37:24

阅读数 29730

评论数 2

Khan公开课 - 统计学学习笔记:(八)样本均值之差

E(X)和Var(X)符合线性 所谓的线性,就是f(x+y)=f(x)+f(y)。概率中期望值和方差都符合线性。 X、Y为两个互不相干,即相互独立的概率变量。 如果Z=X+Y,则E(Z)=E(X+Y)=E(X)+E(Y),方差Var(Z)=Var(X+Y)=Var(X)+Var(Y)。 如...

2012-10-08 16:47:34

阅读数 4833

评论数 1

Khan公开课 - 统计学学习笔记:(七)伯努利分布、置信区间、t分布、p-value和第一型错误

伯努利分布(Bernoulli Distribution) Bernoulli Distribution是最简单的二项式分布,只有两个选择,Y or N,以0表示N,1表示Y。在日常生活中也比较常见,符合非黑即白的二元思维,例如投票预测。假设p表示Y(1)的概率,那么N(0)的概率为1-p。 ...

2012-10-06 16:26:53

阅读数 20761

评论数 0

Khan公开课 - 统计学学习笔记:(六)中心极限定理

什么是中心极限定理 中心极限定理Central Limit Theorem:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n的正态分布。 注意:原来的分布不一定要符合正态分布,可以是任何的分布,可以是离...

2012-10-04 16:39:16

阅读数 13797

评论数 2

Khan公开课 - 统计学学习笔记:(五)正态分布

正态分布:二项分布极好的近似 X是随机变量,E(X)是期望值。正态分布(normal distribution)也称为高斯分布(Gaussian distribution),或者钟形曲线(bell curve)。 (x-μ)/σ也称为z score(注意:z score是个通用的概念,包括...

2012-10-01 18:04:14

阅读数 15543

评论数 0

Khan公开课 - 统计学学习笔记:(四)泊松分布、大数定理

泊松分布 假设概率分布是一致的,例如不会因时间段不同而异,又假设各事件的概率是不相关的(即不相互影响),符合泊松分布Poission distribution。例如某个路口一小时内有多少量车经过。 E(X)=λ,期望值是λ。我们将计算P(X=k)时出现的概率。 如果根据二项分布进行计...

2012-10-01 17:36:17

阅读数 6651

评论数 0

Khan公开课 - 统计学学习笔记:(三)随机变量、概率密度、二项分布、期望值

随机变量 Random Variable 随机变量和一般数据上的变量不一样,通常用大写字母表示,如X、Y、Z,不是个参数而是function,即函数。例如,下面表示明天是否下雨的随机变量X,如下。又例如X=每小时经过路口的车辆,随机变量是个描述,而不是方程中的变量。 随机变量有两种,一种是...

2012-09-21 11:55:24

阅读数 8809

评论数 0

思考:谁主宰我们的思维

此文写了很长一段时间,最早在9月4日,海岛局势尚未紧张,其后又陆续添加,在上周飞上海时在飞机上完成,今日稍加修正,贴上。 先看一个小故事,源自同事Q上来“一身材尚好的姑娘上公交车刚坐下,一大肚婆就站于她身边,司机叫,这姑娘,给孕妇让个位子吧。姑娘犹豫了一下,没有起身。司机终于hold不住了,怒道...

2012-09-18 21:59:40

阅读数 5319

评论数 8

提示
确定要删除当前文章?
取消 删除
关闭
关闭