VisionMobile:2013年Q3移动开发者经济报告(十三):第十二章、应用经济的评估

第十二章、应用经济的评估

过去几年,移动行业经历了由第一代iPhone引发的强有力的剧烈火花,并推出第一个真正的应用生态系统。这带来了移动价值的逐步转向,稳步地从传统移动经济台柱,即运营商服务和移动手机,转向了应用生态系统。新兴价值链元素是我们所说的“移动应用经济”,代表了今日移动价值链增长最快领域,并在可预见未来仍将是。

价值转移程度可从下图中看到。2012年,全球应用经济占应用服务和手机市场整体的18%,而我们预计在2016年应用经济的贡献将上升到33%,相当与手机市场的一半。

然而,有些分析源是通过应用商店和广告来估计收入,这忽略了应用经济的大部分。应用商店销售对整体应用经济的贡献不到20%,而应用小店销售和广告市场加起来也刚超过1/4。

VisionMobile发展了一种直接的应用经济评估模型,使用来自开发者经济调查的大规模的细颗粒的数据集。该模式不仅包括通过应用直接产生的收入,还包括通过委托应用的经济活动,作为应用货币化模式的移动应用电子商务(即,不包括以电子商务作主业务的),风险投资,为应用开发者提供的服务,以及其他直接与移动应用相关的收入来源。

2012年,全球应用经济有530亿美元,并预计在2013年达到680亿美元。2012至2016年复合增长率为28%,将在2016年达到1400亿美元。巨大的增长将来自亚太地区和拉丁美洲,就智能手机渗透率而言,那是增长最快的市场。

我们预计在2013年全球移动开发者人数将达到230万,平均每个直接参与应用经济的组织雇佣4.5名开发者,尽管这个数字因地区不同有显著差异。移动开发者占到全部开发者人数的12.6%。也就是说,在2013年,8名软件开发者中就有1名移动开发者。

VisionMobile的应用经济预测2013-2016模型结合来自我们的2013年开发者经济调查的结果,以及反应从下到上和从上到下的应用经济的一大组行业数据和指标。VisionMobile应用经济预测2013-2016报告对现状以及下面应用经济的增长提供了独特的数据点:

■ 预测(2013-2016)各地区收入(北美,欧洲,亚太,拉丁美洲,中东和非洲)

■ 预测(2013-2016)各平台的收入(Android,iOS,HTML5,Windows Phone)

■ 预测(2013-2016)各收入源的收入(应用商店,应用内广告,移动电子商务,外包开发,其他)

■ 预测(2013-2016)全球移动开发者人数

■ 移动开发者2013年在各地区、平台和收入源的人数

这份报告可在www.developereconomi cs.com/Forecasts上获得。(Wei:是收费报告,不断地在做广告,他们也在移动应用经济当中,收入很重要)

End

Wei:总体来讲,这份报告没有之前的惊艳,没有带来特别重要的新资讯。移动应用生态系统发展到今天,也越来越被人熟悉,那种西部开发的一夜暴富的淘金者的令人激动的日子已经一去不复返,移动应用进入了稳定的发展期。而智能手机在离足够好,不需要那么快地迭代的日子也不远,它是一件生活必须品,将不再是时髦的象征。

 

相关链接:我的产业生态链和杂谈文章

内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值