“祖传代码”二三事

本文探讨了在旧项目中遇到的‘祖传代码’,如Perl的加密模块和C语言的冒泡排序,这些代码反映了过去的技术实践。管理这些遗产需尊重其价值并进行现代化改造,同时体现了程序员在技术传承中的学习与成长过程。
摘要由CSDN通过智能技术生成

想象一下,某日你加入了一个历史悠久的项目团队,代码库如同一座古老的图书馆,藏书无数。在这里,你首次遇到了所谓的“祖传代码”——那是一段用古老Perl语言编写的登录验证模块,它的存在仿佛一位年迈的守护者,守护着系统的大门。

代码如下:

sub check_password {
    my ($username, $password) = @_;
    my $salt = '2a';
    my $encrypted_password = crypt($password, $salt);
    # ...与数据库中的密码进行比较
}

这段代码虽短,但却暗藏玄机。它使用了一种古老的加密方法——crypt,而且“盐值”($salt)竟然是固定的。在当今的加密标准看来,这简直是“祖级”的加密方法,安全性堪忧。但它却如同一道传承了数十年的谜题,既展示了当年编程实践的限制,也体现了那个时代技术的独特风貌。


进入代码库的更深处,你发现了一个用C语言写成的排序函数,这个函数是团队的创始人在上世纪90年代早期为了处理用户数据而编写的。它看起来既简单又复杂,代码示例如下:

void ancient_sort(int arr[], int n) {
    int i, j, temp;
    for (i = 0; i < n - 1; i++)
        for (j = 0; j < n - i - 1; j++)
            if (arr[j] > arr[j + 1]) {
                temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
}

这其实是一个经典的冒泡排序算法,虽然在今天的视角看来效率较低,但在当时的硬件资源限制下,这样的算法足以应对日常的数据处理需求。它如同一位年迈的舞者,在数据的海洋中轻盈地跳跃着,虽然步伐看似缓慢,却也稳定而可靠。


除了具体的代码实例,祖传代码还体现在某些编程习惯上,比如使用全局变量来保存状态,或是那些令人费解的命名约定,它们如同古老的符咒,只有破解了它们背后的故事,你才能真正理解它们的意义。比如,你可能会在代码中发现一个变量名为tmp42,背后的故事可能是:在一次深夜加班中,第42次尝试的临时解决方案意外地成功了,从此tmp42成为了一个幸运符号,被无数次地复制粘贴到了新的功能中。

管理这些“祖传代码”既是一个挑战也是一个机遇。一方面,我们需要尊重它们作为技术遗产的价值,另一方面,也需要勇于对它们进行现代化的改造和重构。如同修复一件古董,既要保留它的原始风貌,又要确保它能适应现代的使用环境。

例如,针对那段古老的Perl登录验证模块,我们可能会用现代的加密标准重写它,同时保留原有的逻辑结构;对于那个冒泡排序函数,我们或许会用更高效的排序算法替换它,但同时编写详细的文档,记录下它在团队历史中的地位和意义。

最后,正如处理“祖传代码”一样,程序员们在处理这些遗产时,不仅需要技术上的精湛和智慧,更需要一颗敬畏过去、拥抱未来的心。通过这样的态度,我们不仅能够保留和传承技术的精华,更能在这个过程中不断学习和成长,让这些“祖传代码”在新的时代继续发光发热。

这是一道数学题,可以先算出每次攻击后,小黄人能杀死的最多入侵者数量,然后根据小黄人攻击的次数,计算最多能击败的入侵者数量。 具体做法如下: 1. 计算每次攻击后,小黄人能杀死的最多入侵者数量 设每次攻击后小黄人杀死了 x 个入侵者,则有: x = min(m, n * b) 其中,n * b 表示小黄人最多能够攻击的入侵者数量,min(m, n * b) 表示小黄人最多能够杀死的入侵者数量,因为小黄人攻击的次数有限,不能超过总的入侵者数量。 2. 计算最多能击败的入侵者数量 设小黄人一共杀死了 y 个入侵者,则有: y = x + (n - 1) * min(m - x, b * x) 其中,n - 1 表示小黄人攻击的次数,min(m - x, b * x) 表示剩余入侵者中最多能够杀死的数量,因为小黄人每次攻击后,入侵者的数量会减少,所以剩余入侵者中最多能够杀死的数量也会发生变化。 根据以上公式,可以写出如下的 C++ 代码: ```cpp #include <iostream> using namespace std; long long calc(int n, int m, int a, int b) { long long x = min(m, (long long)n * b); // 每次攻击后能杀死的最多入侵者数量 long long y = x + (n - 1) * min((long long)m - x, x * b); // 最多能击败的入侵者数量 return y / a; // 返回能杀死的入侵者数量 } int main() { int T; cin >> T; while (T--) { int n, m, a, b; cin >> n >> m >> a >> b; cout << calc(n, m, a, b) << endl; } return 0; } ``` 希望能够帮助到您!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YF云飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值