求素数 -- Python实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/fly_yr/article/details/51119599

用filter求素数
计算素数的一个方法是埃氏筛法,它的算法理解起来非常简单:
首先,列出从2开始的所有自然数,构造一个序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数5,然后用5把序列的5的倍数筛掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不断筛下去,就可以得到所有的素数。

代码

#(1)构造一个从3开始的奇数序列,是一个无限序列的生成器
def _odd_order():
    n = 1
    while True:
        n = n + 2
        yield n

#(2)定义一个筛选函数
def _not_divisible(n):
    return lambda x : x % n > 0

#(3)定义一个生成器,不断返回下一个素数
def primes():
    yield 2
    it = _odd_order() #初始序列
    while True:
        n = next(it)    #返回序列的第一个数
        yield n
        it = filter(_not_divisible(n),it)   #返回新序列

#(4)打印100以内的所有素数
for n in primes():
    if n < 100:
        print(n)
    else:
        break

GitHub源码

阅读更多

没有更多推荐了,返回首页