关联分析之Apriori学习笔记

关联分析(Association analysis)

简介

大量数据中隐藏的关系可以以‘关联规则’和‘频繁项集’的形式表示。rules:{Diapers}–>{Beer}说明两者之间有很强的关系,购买Diapers的消费者通常会购买Beer。
除了应用在市场篮子数据(market basket data)中,关联分析(association analysis)也可以应用在其他领域像bioinfomatic(分析复杂生物知识的学科)、medical diagnosis、Web mining和scientific data analysis。
在关联分析中有两个问题需要解决:1,从大量交易数据中发现隐藏的模式需要大量运算;2,有些模式可能只是刚好发生,因此这些模式是虚假的。所以以下内容包括两点:1,利用某种算法高效的挖掘这种模式;2,通过评估这些模式避免产生虚假结果。1
下面以market basket data分析为例:
这里写图片描述

几个概念:

  • Itemset
    I=i1,i2,,id 是所有项的集合。在association analysis中,0或更多项的集合称为itemset,具有 k 项的itemset称为k-itemset。
  • support count
    包含某个特定的Itemset的交易数目。在表6.1中2-itemset{Bread,Milk}的support count:σ({Bread,Milk})=3(1)
  • rule
    规则,不难理解, XY(XY=) ,箭头左边称为先决条件(antecedent),箭头右边称为结果(consequent)
  • support
    某一项集或规则发生次数占总交易次数的百分比。 s(XY)=s({X,Y})=σ(XY)N(2)
    例如:项集{Bread,Milk}的support为 35
  • confidence
    X发生时Y发生的概率,也即条件概率。
    Confidence,c(XY)=σ(XY)σ(X)(3)

寻找关联规则的两个步骤

给定一个交易集合 T ,寻找所有的满足supportminsup,并且confidence minconf的规则,minsup和minconf是相应的support和confidence的阈值。
一种寻找关联规则的方法是计算每一条可能规则的support和confidence,也就是我们说的蛮力法。这种方法需要大量的运算,因为规则的个数是呈指数增长的。一个包含 d 个项的数据集可以提取出的规则的数目是

R=3d2d+1+1()

既然我们不想使用蛮力法,那么应该使用什么方法来寻找关联规则呢?从上式(1)可以看出规则 XY 的support仅仅依赖于相应的项集 XY 的support。例如,下面的规则的support完全相同,因为他们有相同的项集{Beer,Diapers,Milk}:
{Beer,Diapers} {Milk},{Beer,Milk} {Diapers},{Diapers,Milk} {Beer},{Beer} {Diapers,Milk},{Milk} {Beer,Diapers},{Diapers} {Beer,Milk}
如果项集{Beer,Diapers,Milk}不是频繁的,那么可以直接裁剪掉以上所有6个候选规则。
因此,许多关联规则挖掘算法将这个问题分解成两个主要子任务:
- 产生频繁项集:寻找所有达到support阈值的项集。
- 产生规则:从频繁项集中提取具有高置信度的规则,这些规则称为强规则。2

产生频繁项集

Apriori原理

我们可以使用枚举法列举出所有可能的k-itemset,然后计算每个项集的support。一个具有 m 项的数据集可以产生2m1个项集,而其中满足support阈值的项集可能很少。显然,当数据集很大时,枚举法并不是个高效的方法。从下图可以看出,有4个项的数据集,共有15个项集。
图来自 机器学习实战
为了提高寻找频繁项集的效率,我们应该把那些不可能满足support阈值的项集裁剪掉。
Apriori原理:如果一个项集是频繁的,那么它的子项集也一定是频繁的
反过来说,如果一个项集不是频繁的,那么它的父项集也一定不是频繁的。下图加了阴影的项集被裁剪掉。
这里写图片描述
来自 机器学习实战
根据以上原理,我们可以从上往下寻找频繁项集。也就是,首先寻找频繁项集:1-itemset,然后再由1-itemset组合成2-itemset…..(其实上图的例子并没有减少需要计算support的项集个数(这个是不是程序需要改进??怎么只有1-itemset是infrequent的时候才能减少需要计算的项集数),如果 3 是infrequent的,那么以下包含3的项集可以全部忽略)
伪代码
1. 计算得到频繁项集1-itemset的集合: Iii=1
2. k=2
当 k le 项的个数 N 时:
Ik=generateIk(D,Ii) …从I_i中产生频繁项集的集合 Ii+1
i=k,k++

其中,generateIk函数是从k-itemset产生(k+1)-itemset
这个函数包含两个过程:连接和筛选。
- 连接
当确定了一个频繁项集k-itemset的全部集合后,它需要和自身连接,生成k+1-itemset。所谓连接,就是两个不同的频繁项集k-itemset,当它们的前(k-1)项都相同时,就进行合并。
- 筛选
从上面的定理我们得知,当子项不是频繁项集时,父项也一定不是频繁项集。但当子项都是频繁项集时,其父项却不一定是频繁项集。因此,在连接得到(k+1)-itemset后,还需要计算它的support,如果不满足support的阈值,那么就删去。

python程序

下面的程序和 机器学习实战 中的程序思想基本相同,但我个人感觉书中的程序有些难以理解,因此自己写了一个。 感谢 机器学习实战 作者

'''产生频繁项集'''
def genFreqItemset(dataSet,minSupp=0.5):
    '''
    input:
            dataSet:training data,type:list
    output:
            freqSet:a list of all the k-itemset.each element is frozenset
            support:a dict,the support of frequent itemset
    '''
    unique_value={}
    I1=[]
    support={}
    freqSet=[]
    m=len(dataSet)
    for tran in dataSet:
        for item in tran:
            if item not in unique_value.keys():
                unique_value[item]=0
            unique_value[item]+=1

    for item in unique_value.keys():
        supp=float(unique_value[item])/m
        if supp>=minSupp:
            I1.append(frozenset([item]))  #frozeset can serve as a key to dictionary
            support[frozenset([item])]=supp #only record the support of frequent itemset
    I1.sort();
    freqSet.append(I1)
    k=2
    Lk=[]
    while k<=m:
        Lk=generateLk(freqSet[k-2],k)
        Lk,LkSupp=filterLk(dataSet,Lk,minSupp)
        freqSet.append(Lk)
        support.update(LkSupp)
        k+=1
    return freqSet,support

def generateLk(freq,k):
    '''
    input:

            freq:  the itemset in freq is k-1 itemset
               k:  create k-itemset from k-1_itemset
    output:
            Lk:a list of k-itemset,frequent and infrequent
    '''
    Lk=[]
    for i in range(0,len(freq)-1):
        for j in range(i+1,len(freq)):
            if list(freq[i])[0:k-2]==list(freq[j])[0:k-2]:#fore k-1 item is identity
                Lk.append(frozenset(freq[i]|freq[j]))
    return Lk

def filterLk(dataSet,Lk,minSupp=0.5):
    '''
    input:  
            Lk: all the k-itemset that need to be pruned
    output:
            filteredLk: frequent k-itemset which satisfy the minimum support
                LkSupp: the support of frequent k-itemset
    '''
    LkSupp={}
    filteredLk=[]
    for itemset in Lk:
        supp=calcSupport(dataSet,itemset)
        if supp>=minSupp:
            LkSupp[frozenset(itemset)]=supp
            filteredLk.append(frozenset(itemset))
    return filteredLk,LkSupp

def calcSupport(dataSet,Lk):
    '''
        calculate the support of Lk,
        Lk is a frozenset
    '''
   # Lk=list(Lk)[0]
    dataSet=map(set,dataSet)
    m=len(dataSet)
    num=0
    for tran in dataSet:
        if Lk.issubset(tran):
            num+=1
    return float(num)/m

测试

>>> dataSet
[[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
>>> Lk,support=apriori_f.genFreqItemset(dataSet,0.5)
>>> Lk[0]
[frozenset([1]), frozenset([2]), frozenset([3]), frozenset([5])]
>>> Lk[1]
[frozenset([1, 3]), frozenset([2, 3]), frozenset([2, 5]), frozenset([3, 5])]
>>> Lk[2]
[frozenset([2, 3, 5])]
>>> Lk[3]
[]
>>> support
{frozenset([5]): 0.75, frozenset([3]): 0.75, frozenset([2, 3, 5]): 0.5, frozenset([3, 5]): 0.5, frozenset([2, 3]): 0.5, frozenset([2, 5]): 0.75, frozenset([1]): 0.5, frozenset([1, 3]): 0.5, frozenset([2]): 0.75}

从频繁项集中提取强规则

修剪

从频繁项集中提取规则保证了这些规则的support一定满足minsupport,接下来就是置信度的计算。同样,我们可以使用蛮力列举所有可能的规则,并计算其置信度,但这样我们会做许多无用功。一个包含 n 项的频繁项集,可能产生的规则数是2n1
为了提高效率,我们采用同前面Apriori算法类似的裁剪方法:
如果 XYX 不满足最小置信度,那么 XYX(XX) 也一定不满足最小置信度。
证明: c(XYX)=support(Y)support(X)<minConfidence
c(XYX)=support(Y)support(X) ,其中, support(X)support(X) ,所以有 c(XYX)<minConfidence
如下图:
这里写图片描述
图中添加阴影的规则全部被裁剪掉。

python程序

def getBigRule(freq,support,minConf=0.5):
    '''
    input:  
            freq   : the frequent k-itemset,k=1,2,...n
            support:  corresponding support  
    outpur:
            bigRuleList: a list of all the rule that satisfy min confidence
    '''
    bigRuleList=[]
    m=len(freq)
    for i in range(1,m):
        genRules(freq[i],support,bigRuleList,minConf)
    return bigRuleList

def genRules(freq,support,brl,minConf=0.5):
    '''
    extract rules that satisfy min confidence from a list of k-itemset(k>1)
    put the eligible rules in the brl
    '''
    if len(freq)==0:return
    if len(freq[0])==2: #handle 2-itemset
        for itemset in freq:
            for conseq in itemset:
                conseq=frozenset([conseq])
                conf=support[itemset]/support[itemset-conseq]
                if conf>=minConf:
                    print itemset-conseq, '-->',conseq,'conf:',conf
                    brl.append((itemset-conseq,conseq,conf))
    elif len(freq[0])>2:
        H=[]
        for itemset in freq:
            # first generate 1-consequence list
            for conseq in itemset:
                conseq=frozenset([conseq])
                conf=support[itemset]/support[itemset-conseq]
                if conf>=minConf:
                    print itemset-conseq, '-->',conseq,'conf:',conf
                    brl.append((itemset-conseq,conseq,conf))
                    H.append(conseq)
            m=2
            #  generate 2,...,k-1 consequence
            while m<len(freq[0]):
                H=generateLk(H,m)
                for conseq in H:
                    conf=support[itemset]/support[itemset-conseq]
                    if conf>=minConf:
                        print itemset-conseq, '-->',conseq,'conf:',conf
                        brl.append((itemset-conseq,conseq,conf))
                m+=1

利用以上得到的频繁项集测试:

>>> brl=apriori_f.getBigRule(freqSet,support,0.7)
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
frozenset([2]) --> frozenset([5]) conf: 1.0
frozenset([3, 5]) --> frozenset([2]) conf: 1.0
frozenset([2, 3]) --> frozenset([5]) conf: 1.0
>>> brl
[(frozenset([1]), frozenset([3]), 1.0), (frozenset([5]), frozenset([2]), 1.0), (frozenset([2]), frozenset([5]), 1.0), (frozenset([3, 5]), frozenset([2]), 1.0), (frozenset([2, 3]), frozenset([5]), 1.0)]

参考资料:

[1] 机器学习实战
[2] 使用Apriori算法和FP-growth算法进行关联分析


  1. Introduction to data mining Ch6
  2. Introduction to data mining Ch6
  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值