张量分解
Flying_sfeng
这个作者很懒,什么都没留下…
展开
-
张量分解(一):基础知识
昨天在组里分享了张量分解相关的知识,现在想把它整理成一个系列,供有需要的同学阅读。 下文根据Tensor Decompositions and Applications∗ 整理,原文比较长,我主要整理了一些比较常用的,有需要的同学可以直接阅读原文。 我们知道,一维的数组叫向量,二维的叫矩阵,三维及三维以上的就是张量了。 如下图,就是一个三阶张量: 以下为一些张量相关的基础知识(本文根据...原创 2018-08-25 17:49:03 · 27487 阅读 · 1 评论 -
张量分解(三):Tucker分解
在讲解Tucker分解之前,我们先看一下Tucker分解在三阶张量上的分解形式: Tucker分解(Tucker decomposition)是高阶的主成分分析的一种形式。它将一个张量分解成一个核张量与每一维矩阵的乘积,具体如下: 这里A∈RI×P,B∈RJ×Q,A∈RK×RA∈RI×P,B∈RJ×Q,A∈RK×RA\in R^{I\times P},B\in R^{J\times Q...原创 2018-08-27 11:13:14 · 26318 阅读 · 5 评论 -
张量分解(二):CP分解
这一篇文章主要讲解CP分解算法(CANDECOMP/PARAFAC decomposition). 首先,我们必须明确,CP分解是做了什么工作,目的是想干什么。 我来自问自答:CP分解是将一个高维的张量,分解成多个核的和,每个核是由向量的外积组成;通过这样的分解,我们可以大大地降低参数的维度。 其实,不止CP分解,其他的张量分解算法都是同个道理,只是所采用的分解方法不同而已。当然,这样的分解...原创 2018-08-25 19:41:24 · 25960 阅读 · 8 评论 -
张量分解(四):Tensor-train Decomposition
在讲解Tensor-train Decomposition之前,我们先看一下Tensor-train Decomposition在三阶张量上的分解形式:Tensor-train Decomposition将原来的高维张量分解为多个三维张量的乘积(首尾张量为二维),具体分解形式如下图:Tensor-train Decomposition的参数优化方法为TT-SVD:参考:Tensor-T...原创 2019-02-16 15:42:18 · 17645 阅读 · 1 评论 -
张量分解(五):Tensorizing Neural Network
张量分解系列:张量分解(一):张量分解(一):基础知识张量分解(二):张量分解(二):CP分解张量分解(三):张量分解(三):Tucker分解张量分解(四):张量分解(四):Tensor-train DecompositionTensorizing Neural Network即张量化神经网络,跟一般神经网络的区别是把输入输出,权重,偏置等转换成张量的形式,反向传播同样使用链式法则。这...原创 2019-02-16 16:19:05 · 7248 阅读 · 5 评论 -
张量分解(六):TTRNN model for video classification
张量分解系列:张量分解(一):基础知识张量分解(二):CP分解张量分解(三):Tucker分解张量分解(四):Tensor-train Decomposition张量分解(五):Tensorizing Neural Network爬山涉水,终于来到了这里,这篇文章主要讲解Tensor-train Decomposition在RNN中的应用,并用于视频分类任务。其实将TT分解应用于RN...原创 2019-02-16 16:40:17 · 5492 阅读 · 8 评论