McCabe复杂度计算

1、McCabe复杂度计算公式:V(G)=m-n+2,其中m是有向弧的条数,n是结点数。

2、对于伪代码可以先转换为程序流程图,对程序流程图可以最终转换为结点图处理,转换时注意将交点的地方标注为新的结点,以最终的结点图带入公式结算其McCabe复杂度。

**软件维护类型
**

1、更正性维护:针对真实存在并已经发生的错误进行的维护行为。

2、预防性维护:针对真实存在但还未发生的错误进行的维护。

3、适应性维护:指使应用软件适应信息技术变化和管理需求变化而进行的修改。企业的外部市场环境和管理需求的不断变化也使得各级管理人员不断提出新的信息需求。

4、完善性维护:扩充功能和改善性能而进行的修改。对已有的软件系统增加一些在系统分析和设计阶段中没有规定的功能与性能特征。

风险管理

1、风险的特性:具有不确定性,可能会造成损失。

2、风险的类别:项目风险涉及到各种形式的预算、进度、人员、资源以及客户相关的问题,并且可能导致项目损失。技术风险涉及到技术相关的可能会导致项目损失的问题。商业风险与市场因素相关。社会风险涉及到政策、法规等因素。

3、风险暴露又称风险曝光度,测量的是资产的整个安全性风险,它将表示实际损失的可能性与表示大量可能损失的资讯结合到单一数字评估中。在形式最简单的定量性风险分析中,风险曝光度可透过将风险可能性及影响相乘算出。

风险曝光度(RiskExposure)=错误出现率(风险出现率)X错误造成损失(风险损失)。

### 软件工程中环形复杂度计算 #### 理解环形复杂度的概念 环形复杂度(Cyclomatic Complexity),也被称为循环复杂度,是用于衡量程序单元复杂性的指标之一。该度量方法由 Thomas J. McCabe, Sr. 在 1976 年提出[^3]。此度量不仅帮助开发人员评估代码的质量和可维护性,还能够指导测试策略的设计。 #### 计算环形复杂度的具体方法 为了计算某个特定函数或模块的环形复杂度,通常采用如下公式: \[ \text{CC} = E - N + 2P \] 其中, - \(E\) 表示控制流图中的边数; - \(N\) 是节点数目; - \(P\) 则代表连通区域的数量;对于单个过程而言,默认值为1[^1]。 下面给出一个简单的 Python 函数作为例子来展示如何应用上述公式进行实际操作: ```python def example_function(a, b): result = None if a > 0 and b < 5: result = "Condition A" elif a <= 0 or b >= 5: result = "Condition B" return result ``` 在这个案例里, - 控制流图中有 **8 条边** 和 **7 个节点** - 连通区只有一个即 P=1 因此按照给定公式我们可以得到其环形复杂度 CC 的值等于 `8 - 7 + 2 * 1` 即 **3**。 #### 实际意义与应用场景 通过计算环路复杂度,开发者可以获得关于代码结构的重要见解,并据此做出改进决策以提升整体质量。此外,在软件测试阶段,较高的环形复杂度可能意味着存在更多难以覆盖到的情况组合,这提示我们需要更加全面深入地考虑测试方案[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

flysh05

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值