2021FME博客大赛 —— 基于FME的土地利用与夜光遥感数据综合统计

博客大赛 专栏收录该内容
65 篇文章 13 订阅

作者:贾继鹏

 

摘要:本文使用FME空间数据转换处理软件,对土地利用数据和夜光遥感影像数据进行综合统计分析研究,获取不同地域、不同类型、不同时期的综合统计信息,从时空域上分析这些数据,以呈现出我国近些年来的区域经济发展态势,对于区域发展评估、国土空间规划等具有重要意义。

 

1、任务背景

土地利用能够为人类提供各类产品和服务,具有环境功能、社会功能和经济功能等多功能特性,是评估土地利用效应、合理性及可持续性的重要手段。夜光遥感能够有效获取经济社会发展动态,评估经济社会发展可能存在的宏观问题。开展土地利用与夜光遥感数据综合统计研究,从土地利用的角度分析近年来我国各省域的夜光遥感指标数据,为区域可持续发展研究提供一种有效途径。

本文充分利用FME强大的空间数据处理能力,综合运用土地利用分类数据和夜光遥感影像数据,通过数据准备、土地利用分类数据处理、夜光遥感数据处理、叠加分类综合统计等数据处理过程,按省域获取不同地域、不同类型、不同时期的综合统计数据信息,能够为社会经济发展研究、国土空间规划等提供快速、可靠的数据支撑。

2、基于FME的技术路线

2.1 数据准备

依据项目研究目标,收集相关数据资源,并经过分类整理与分析,以及必要的预处理,满足叠加分类统计分析的需求。

(1)任务范围线数据。获取资源环境科学与数据中心网站的中国省级行政边界矢量数据,采用shp格式Krasovsky_1940_Albers坐标系。数据可作为研究区域范围界定以及其他数据处理的范围依据。

(2)土地利用数据。获取资源环境科学与数据中心网站的多时期中国土地利用遥感监测栅格数据,采用GRID格式Krasovsky_1940_Albers坐标系。数据集包括1970年代末期(1980)-2020年共九期,数据生产制作是以各期Landsat 8/TM/ETM遥感影像为主要数据源,通过人工目视解译生成。土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型,本项目主要关注居民地相关分类,具体分类如表 1所示。数据准备时以不同年份数值为上一级文件夹统一存放各省份分区数据,便于以不同时期为主线进行分类统计。

                                                                                                                                      表 1 居民地相关分类系统

一级类型

二级类型

编号

名称

编号

名称

含义

5

城乡、工矿、居民用地

-

-

指城乡居民点及其以外的工矿、交通等用地。

-

-

51

城镇用地

指大、中、小城市及县镇以上建成区用地。

-

-

52

农村居民点

指独立于城镇以外的农村居民点。

-

-

53

其它建设用地

指厂矿、大型工业区、油田、盐场、采石场等用地以及交通道路、机场及特殊用地。

(3)夜光遥感数据。获取科罗拉多矿业大学提供的NPP夜间灯光遥感数据,主要以经过了一定校正处理和合成的月尺度数据为主。文件以压缩的tarball传送,每个压缩包含一组地理位置。数据采用GeoTIFF格式WGS 1984地理坐标系。按照研究区域主要下载75N060E片区数据,文件命名示例:SVDNB_npp_20200401-20200430_75N060E_vcmcfg_v10_c202006121200.avg_rade9h.tif。数据准备时可将解压后不同年份的GeoTIFF格式月度数据统一存放至一个文件夹内。

2.2 土地利用数据处理

土地利用数据处理主要是对获取的原始土地利用遥感监测栅格数据按照不同年份分类,经过坐标转换、镶嵌、栅格矢量化、重分类及融合、分区提取等处理,获取待统计区域的土地利用分类数据。具体处理流程如图 1所示。

                                                                                                                                     图 1 土地利用数据处理

原始土地利用遥感监测栅格数据采用Krasovsky_1940_Albers坐标系,为了最终分类统计面积的准确性,特统一转换至Asia_North_Albers_Equal_Area_Conic坐标系,采用EsriReprojector转换器进行处理,以便充分利用ESRI已有重投影库参数模型。参数设置如图 2所示:

                                                                                                                                  图 2 坐标转换参数设置

土地利用遥感监测栅格数据是按照不同年份不同省份进行的存储,为了便于后期依据新的分区进行叠加统计,需要将现有分散数据统一整合,并保留数据年份信息。采用RasterMosaicker转换器镶嵌同一年份数据,增加“地类年份”字段,并以原始数据暴露的属性项“fme_basename”为基础赋值相应属性。参数设置如图 3所示:

                                                                                                                              图 3 地类年份取值参数设置

栅格矢量化采用RasterToPolygonCoercer转换器将栅格转换为矢量面数据,并保留数据中地类代码值为“地类”字段。以便于后期在矢量面数据的基础上,依据不同的地类代码进行精准的叠加统计。

采用AttributeFilter转换器将矢量面数据按照地类代码51、52、53进行分类输出,同时输出其他分类数据。对于其他分类数据作为一个整体研究,需采用AttributeManager转换器进行统一地类代码赋值,仅限数值型,以77为例,便于在最终统计表中统一替换为“其他”类型。再采用Dissolver转换器将新赋值地类融合为一个整体,便于后期同类统计。

                                                                                                                              图 4 要素分类输出参数设置

当然,对于要素分类输出也可以采用TestFilter转换器设置必要的测试条件过滤要素分类输出,无论采用哪种方式都不可避免要对其他地类数据进行统一赋值、融合的过程,个人倾向于采用AttributeFilter转换器参数设置便捷一些。

为了进行分区统计,还需采用Clipper转换器结合新的省级分区范围矢量面数据进行分区裁切输出。将提取的土地利用分类数据作为被裁切的对象,分区范围面作为裁切对象,同时选择合并属性参数项,便于后期依据不同类型值分类统计。

2.3 夜光遥感数据处理

NPP夜光遥感影像数据处理主要是通过坐标转换、裁切、栅格镶嵌、栅格矢量化等步骤,实现待叠加统计区域夜光遥感影像数据提取。具体处理流程如图 5所示:

                                                                                                                     图 5 夜光遥感数据处理流程

原始夜光遥感影像数据采用WGS 1984地理坐标系,需使用EsriReprojector转换器投影至Asia_North_Albers_Equal_Area_Conic坐标系,投影方法同土地利用数据坐标系转换,便于数据在统一的坐标系下开展叠加分类统计。

研究区域是位于75N060E片区的夜光遥感影像数据,覆盖范围包含中国全境以及周边国家区域,数据量较大,需要采用Clipper转换器结合研究范围界线进行裁剪输出,避免过多数据冗余,提高数据处理效率。同时在裁剪过程中添加“夜光年份”字段,利用字符串函数Substring结合数据读取时暴露的属性项“fme_basename”进行自动赋值,作为叠加分类统计的区分类型之一。

夜光遥感影像数据因部分年尺度数据无法获取,故采用经过了一定校正处理和合成的月尺度数据,利用RasterMosaicker转换器镶嵌为年尺度的平均数据,镶嵌过程中以“夜光年份”字段为分组进行,便于叠加分类统计尺度保持一致。具体参数设置如图 6所示:

                                                                                                                      图 6 夜光遥感影像数据镶嵌参数设置

然后需要利用RasterToPolygonCoercer转换器将影像数据矢量化为面数据,保留数据属性为“灯光值”。矢量化面数据为了满足分区精细统计的需要,保留“灯光值”属性是为了统计夜光亮度的最大、最小、平均、数量、总和等数值,满足相关分析的需要。

2.4 分类综合统计

对以上处理的两项分类数据,采用叠加裁切、统计范围筛选、面积计算、统计信息计算等方式,实现数据的叠加分类统计,满足数据分析的需求。具体处理流程如图 7所示:

                                                                                                                               图 7 叠加分类统计数据处理流程

根据数据分析的需求,统计不同地区、不同土地分类类型、不同土地利用年份、不同夜光数据年份的灯光亮度值信息,主要包括最小值、最大值、均值、总值、数量、面积等6项数值。需要将各相关数据进行叠加才能实现不同统计类型所需数值的统计信息,可以采用Clipper或AreaOnAreaOverlayer转换器进行叠加处理,二者均需要合并相交属性,为区分统计类型做准备。采用Clipper转换器时设置较简单,与土地利用数据处理时的设置相同。采用AreaOnAreaOverlayer转换器时需要保留压盖计数属性“压盖数”,为下一步获取相交数据信息做准备,同时选择属性聚合模式为“合并输入的属性”,具体参数设置如图 8所示,还需要使用Tester转换器设置测试条件为“压盖数=2”提取2套不存在自重叠的输入面数据真实相交的部分,满足分类统计的需要。二者处理方法相比,还是Clipper较为便捷。

                                                                                                                            图 8 数据叠加处理参数设置

对于有研究价值的灯光数值使用Tester转换器进行筛选提取,可设置参数测试条件为“灯光值>=10”,值域依据项目实际研究需要确定,具体参数设置如图 9所示:

                                                                                                                                图 9 数据筛选提取参数设置

统计属性项中关键的一项“面积”使用AreaCalculator转换器获取灯光值的平面面积。设置面积属性为“灯光面积”进行统一自动赋值,同时可以利用“放大倍数”参数来确定面积统计单位的换算,如数据本身长度单位为米,设置放大倍数为1,则实现统计面积单位为平方米。具体参数设置如图 10所示:

                                                                                                                          图 10 数据面积计算参数设置

在计算完各要素的面积值属性后,利用StatisticsCalculator转换器完成最后的分类型数据统计,设置分组内容包含省份名称、地类、地类年份、夜光年份,以及添加需要统计的属性信息。具体参数设置如图 11所示:

                                                                                                                                  图 11 分类统计参数设置

3、效果与成效

通过各分类数据的处理研究,搭建了一整套从原始数据到统计信息的全流程数据处理方案,具体流程方案如图 12所示。该流程方案可以全自动快速获取数据分析时需要的统计依据,并且可以在统计结果输出完成后查看各处理环节的缓存数据,为统计结果中异常数值的快速追溯提供可靠依据。按照区域、分类、年份等类型的统计数据信息输出数据表结果,经简单的表格格式调整后,统计结果以**省为例如图 13所示。

                                                                                                                           图 12 数据全流程处理方案

                                                                                                                                   图 13 分类统计信息表

4、技术创新性、应用创新性

本技术方案首先展现了多源异构数据的融合处理能力。多源数据包含矢量、栅格等各类型的区划数据、夜光遥感数据、土地利用数据,各数据来源、数据格式、数据结构等存在较大差异,通过FME较强大的空间数据处理能力,实现数据的统一叠加融合,为多源数据的充分利用提供可靠的技术支撑。

其次展现了异构数据的统一处理能力。异构数据包括矢量、栅格等类型数据,涵盖Shape File、GEOTIFF、GRID、EXCEL等格式,涉及WGS 1984、Krasovsky_1940_Albers、Asia_North_Albers_Equal_Area_Conic等坐标系统,通过FME空间数据转换处理系统实现异构数据的数据格式统一、数据坐标系统一、数据属性关系关联等处理,为异构数据综合利用提供强大支撑。

再者展现了FME广泛的应用领域。该处理方案不仅能对夜光遥感数据进行自动批量处理,准确获取其重要信息要素,还在土地利用分类数据处理方面展现出强大的深加工能力,对于此类专业数据方面且能够游刃有余,其他数据的处理更是不在话下,应用领域较为广泛。

5、行业推广应用价值

利用FME软件,结合不同时期各省的土地利用数据和对夜光遥感数据进行综合统计分析研究,其研究方法及成果能够在诸多行业领域推广应用。利用得到的时空变化统计数据,能够为我国复工复产、区域发展评估、国土空间规划等研究提供数据支撑。今后,可向相关自然资源、数字政务、国民经济等行业部门推广应用,对于促进经济社会发展、乡村振兴、城市化进程等具有重要意义和推广价值。

  • 1
    点赞
  • 0
    评论
  • 2
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值