python高斯函数拟合

文章介绍了如何使用天文望远镜数据来模拟和拟合高斯噪声。通过导入建模库,创建Gaussian1D模型,并使用levmarlsqfitter进行拟合。此外,还提到了使用Scipy的curve_fit函数作为另一种拟合方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有很多方法可以将高斯函数拟合到数据集。我经常在拟合数据时使用天文望远镜,这就是为什么我想添加这个作为额外的答案。

  我使用的一些数据集应该模拟高斯噪声:将数组作为铭牌导入

  从天文望远镜导入建模

  m=modeling.models.Gaussian1D(振幅=10,平均值=30,标准差=5)

  x=np.linspace(0,100,2000)

  数据=m(x)

  数据=数据NP。sqrt(数据)* NP。随机的。随机(x .尺寸)-0.5

  data -=data.min()

  plt.plot(x,数据)

  然后拟合它实际上非常简单,您可以指定要拟合数据的模型和拟合者:钳工=建模。试衣。levmarlsqfitter()

  模型=建模。模特。高斯1d()#根据数据你需要给出一些初始值

  fitted_model=fitter(模型,x,数据)

  并绘制:plt.plot(x,data)

  plt.plot(x,拟合_模型(十))

  不过,也可以只使用Scipy,但必须自己定义函数:从科学计算导入优化

  def高斯(x,振幅,平均值,标准差):

  返回幅度* NP。指数(-((x-均值)/4/标准偏差)* * 2)

  popt,_=optimize.curve_fit(高斯,x,数据)

  这将返回拟合的最佳参数,您可以这样绘制:plt.plot(x,data)

  plt.plot(x,gaussian(x,*popt))

原文地址:http://www.ccttoo.com/html/1983.html

本文来自网络,不代表菜鸟教程之家立场,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值