一夜爆火的SLAM技术即将颠覆哪些领域

SLAM的英文全程是 Simultaneous Localization and Mapping,中文称作「同时定位与地图创建」。SLAM试图解决这样的问题:一个机器人在未知的环境中运动,如何通过对环境的观测确定自身的运动轨迹,同时构建出环境的地图。SLAM技术正是为了实现这个目标涉及到的诸多技术的总和。

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

SLAM技术距今已有 30 余年的发展历史,但相比于深度学习、大数据等词汇,听过的人少之又少,国内从事相关研究的机构更是屈指可数。直至最近三年,SLAM才逐渐成为国内机器人和计算机视觉领域的热门研究方向,在当前比较热门的一些创业方向中崭露头角:

VR/AR 方面,根据 SLAM 得到地图和当前视角对叠加虚拟物体做相应渲染,这样做可以使得叠加的虚拟物体看起来比较真实,没有违和感;

无人机领域,SLAM可以构建局部地图,辅助无人机进行自主避障、规划路径;

无人驾驶领域, SLAM 技术可以提供视觉里程计功能,然后跟其他的定位方式融合;

机器人定位导航领域,SLAM 可以用于生成环境的地图。基于这个地图,机器人执行路径规划、自主探索、导航等任务。

提起SLAM的重要性,有人说,SLAM是无人驾驶技术的灵魂;也有人曾打比方说,手机离开了WIFI和数据网络,就像无人车和机器人离开了SLAM一样。之所以没有受到广泛关注,主要原因在于这个方向难度很大,入门的门槛太高,具体来讲有以下几个原因:

1. 入门资料很少:虽然国内也有部分人在做,但这方面的中文资料几乎没有,入门教程匮乏,直至2017年4月《视觉SLAM十四讲:从理论到实践》的问世。

2. 难以实现:SLAM是一个完整的系统,由许多个分支模块组成。现在经典的方案是“图像前端,优化后端,闭环检测”的三部曲,很多文献看完了自己实现不出来。

3. 动手编程需要大量的先决知识:首先,你要会C和C++,网上很多代码还用了11标准的C++;第二,要会用Linux;第三,要会cmake,vim/emacs及一些编程工具;第四要会用openCV, PCL, Eigen等第三方库。只有学会了这些东西之后,你才能真正上手编一个SLAM系统。如果你要跑实际机器人,还要会ROS。

上述原因直接或者间接导致,国内SLAM技术人才稀缺,同时,机器人、无人机、无人驾驶、虚拟现实等企业的需求旺盛,供不应求的局面逐渐铺开。

640?wx_fmt=png

困难多意味着收获也多,坎坷的道路才能锻炼人。鉴于SLAM技术入门困难,专注于前沿科技在线教育的深蓝学院,联合《视觉SLAM十四讲:从理论到实践》书籍作者高翔博士,推出《SLAM从理论到实践(第二期)》在线系列课程。课程每章节均安排有作业及参考资料,根据作业打分评选优秀学员,优秀学员可获得证书,并推荐到百度智能驾驶事业群、Momenta、地平线、图森未来、驭势科技等知名企业实习就业。

课程讲师

640?wx_fmt=png


高翔,慕尼黑工业大学博士后,清华大学自动化系博士,主编畅销书《视觉SLAM十四讲:从理论到实践》。长期从事SLAM(即时定位与地图构建)的研究,主要包括机器人的中的视觉SLAM技术、机器学习与SLAM的结合,在国际知名期刊 IEEE Transactions on Mechatronics、Robotics and Autonomous Systems、Autonomous Robots等发表论文数篇。

附:《视觉SLAM十四讲:从理论到实践》是国内第一本也是唯一一本专注于SLAM的书籍,现已成为国内入门SLAM的必备资料。

课程特色

1. 成熟的课程体系,从数学基础知识讲起;

2. 理论结合实践,降低入门门槛;

3. 课上在线答疑,课下微信群答疑;

4. 作业设置新颖,批阅讲解仔细;

5. 优秀学员颁发讲师签名的深蓝学院证书;

6. 推荐至百度、地平线等实习就业

7. 课程PPT和作业,会提前公开给学员。

课程目录

1. 概述与预备知识(2学时)

    1.1  课程内容提要与预备知识
    1.2  SLAM是什么
    1.3  视觉SLAM数学表述与框架
    1.4  Linux下的C++编程基础
    1.5  实践:Hello SLAM

2. 三维空间的刚体运动(2学时)
    2.1 点与坐标系
    2.2 旋转矩阵
    2.3 旋转向量与欧拉角
    2.4 四元数
    2.5 相似、仿射和射影变换
    2.6 实践:Eigen矩阵运算
    2.7 实践:Eigen几何模块

3. 
李群与李代数(2学时)
    3.1 群
    3.2 李群与李代数
    3.3 指数与对数映射
    3.4 李代数求导与扰动模型
    3.5 实践:Sophus李代数运算
4. 相机模型与非线性优化(2学时)
    4.1 针孔相机模型与畸变
    4.2 图像的组成
    4.3 从状态估计到最小二乘
    4.4 非线性优化与最小二乘法
    4.5 实践:Ceres曲线拟合
    4.6 实践:g2o曲线拟合
5. 特征点法视觉里程计(2学时)
    5.1 特征点的提取与匹配
    5.2 对极几何
    5.3 三角测量
    5.4 3D-2D:PnP
    5.5 3D-3D:ICP
    5.6 实践:ORB特征点
    5.7 实践:PnP
    5.8 实践:ICP
6. 直接法视觉里程计(2学时)
    6.1 直接法的引出
    6.2 光流
    6.3 直接法
    6.4 实践:LK光流
    6.5 实践:RGB-D直接法

7. 后端优化(2学时)
    7.1 滤波器
    7.2 Bundle Adjustment与图优化
    7.3 Pose Graph
    7.4 Factor Graph
    7.5 实践:Bundle Adjustment

    7.6 实践:Pose Graph
8. 回环检测(2学时)
    8.1 概述
    8.2 词袋模型
    8.3 实践:建立字典以计算图像间相似性
    8.4 课程小结

报名

课程费用499元,前200位报名者可领取 100元优惠券 ;课程采用在线授课,一年内可以无限次回放


请添加工作人员「深蓝学院助教报名

640?wx_fmt=jpeg

SLAM 技术交流群

为了便于SLAM研究者交流学习,并且及时了解行业发展,深蓝学院联合创建了 “SLAM技术交流” 微信群。群内邀请学术界、企业界重量级嘉宾入群:

(1)香港科技大学沈邵劼老师;

(2)《视觉SLAM十四讲》书籍主编高翔博士;

(3)浙江大学CAD&CG国家重点实验室博导章国锋老师;

(4)湘潭大学黄山老师;

(5)环宇智行创始人、武汉大学李明老师;

(6)图森未来首席科学家王乃岩老师;

(7)速感科技CEO 陈震;

(8)Momenta 研发总监孙刚;

(8)阿里巴巴、百度、华为、商汤科技、四维图新等知名企业工程师;

(9)卡内基梅隆大学、宾夕法尼亚大学、多伦多大学等国外知名高校博士、硕士生;

(10)清华大学、浙江大学、上海交通大学、北京大学、哈尔滨工业大学、华中科技大学、西北工业大学等高校研究生。

欢迎各位SLAM技术研究者,加入微信群(扫描上述二维码,添加助教微信入群)。


0?wx_fmt=gif

算法数学之美微信公众号欢迎赐稿

稿件涉及数学、物理、算法、计算机、编程等相关领域
稿件一经采用,我们将奉上稿酬。

投稿邮箱:math_alg@163.com

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页