OpenPose 是一种姿态估计模型,专门用于从图像或视频中检测和分析人体的姿态。它能够识别人体的骨骼结构和关节位置,包括头部、躯干、四肢等关键点,生成人体的二维或三维骨架模型。
当前OpenPose的姿态方法拥有多种不同的方法和操作,这个是我们使用OpenPose的过程中可以了解的操作。
Openpose (=Openpose body):ControlNet内的基础模型,识别眼睛、鼻子、脖子、肩膀、肘部、手腕、膝盖和脚踝等基本身体关键点。它非常适合基本的人体姿势复制。
Openpose_face:通过添加面部关键点检测来扩展OpenPose模型,提供对面部表情和方向的更详细分析。这个ControlNet模型对于专注于面部表情的项目至关重要。
Openpose_hand:增强OpenPose模型,能够捕捉手和手指的复杂细节,专注于详细的手势和位置。这一补充增强了OpenPose在ControlNet中的多功能性。