上半月个人总结和计划(0614)

思来想去,还是开了这个博客,打算归档技术学习相关内容。以后要督促自己定期总结,不能停滞。


1、机器学习技术原理及应用方面:

1.1 L1、L2正则化的原理、区别及相关应用

1.2 特征处理(离散化、交叉、归一、组合)


2、开发方面:

python开发技能完善及补全。继承、多态、调试。


3、产品数据模型方面:

最近因为推荐系统的搭建,重点还放在推荐模型、排序模型的实现上。

看了美团、大众点评的相关架构及实现,论文总结ing,同时也用python及scala实现了几种车联网场景的推荐模型。

3.1 互信息及其python实现

3.2 基于互信息的K-Means python实现

3.3 协同过滤及AUC的scala实现

3.4 Adaboost、DNN的python案例


4、行业方面:

Zebrai、Dataiku架构、行业研究。

工具类API整理。


下半月计划:

重点研究排序模型中的Adaboost、DNN原理推进、具体特征选择、特征处理上。同时,感觉自己薄弱处还有:

1)推荐系统的冷启动问题。将对照冷启动:排行榜体现构建中的相应算法,搭建排行榜得分模型。

2)推荐系统的测试方法。

3)针对推荐、排序的埋点。

4)Adaboost的python模块化及调参实现


4、其他

母婴产品研究及购买ing,卸货倒计时即将进入100天。

底特律大变活人什么时候能发货啊,摔。

看着E3的那堆大饼,饿。

阅读更多
想对作者说点什么? 我来说一句

用友T6服务12月上半月维护总结

2013年01月04日 191KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭