23、React 开发中的反模式与挑战解析

React 开发中的反模式与挑战解析

在 React 开发中,我们常常会遇到一些看似可行,但实际上会在项目发展过程中带来诸多问题的做法,这些就是所谓的反模式。理解这些反模式以及前端开发中面临的各种挑战,对于构建高效、可维护的 React 应用至关重要。

构建 UI 的困难

在构建网页时,如果只是创建一个简单的、类似文档的网页,比如没有搜索框或模态框等高级 UI 元素的基础文章页面,浏览器内置的 HTML、CSS 和 JavaScript 语言通常是足够的。然而,如今大多数应用程序要复杂得多,包含的元素超出了这些原生网络语言最初的设计范围。

以 Jira 这个流行的基于网络的项目管理工具为例,其问题视图包含了问题的标题、描述、附件、评论和关联问题等许多细节,还有用户可以交互的元素,如“分配给我”按钮、更改问题优先级、添加评论等。从表面上看,这个页面似乎有导航组件、下拉列表、手风琴等组件,但实际上它们是开发者使用 HTML、CSS 和 JavaScript 模拟出来的,并非真正的组件。

与理想的 UI 设计工具(如 C++ Builder、Delphi 或 Figma)不同,在网页开发中创建自定义搜索输入框等组件需要进行额外的元素包装、颜色调整、填充和字体设置等操作,创建与搜索框宽度完全匹配的自动建议列表也比想象中更耗费精力。

状态管理

在现代前端开发中,状态管理是一项复杂的任务。前端应用中的状态主要分为远程状态和本地状态。

远程状态是指从远程服务器通过网络获取的数据,通常来自后端服务器或 API。它存在许多挑战:
- 异步性质 :从远程源获取数据通常是

【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)内容概要:本文介绍了一种基于神经网络的数据驱动迭代学习控制(ILC)算法,用于解决具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车路径跟踪问题,并提供了完整的Matlab代码实现。该方法无需精确系统模型,通过数据驱动方式结合神经网络逼近系统动态,利用迭代学习机制不断提升控制性能,从而实现高精度的路径跟踪控制。文档还列举了大量相关科研方向和技术应用案例,涵盖智能优化算法、机器学习、路径规划、电力系统等多个领域,展示了该技术在科研仿真中的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事无人车控制、智能算法开发的工程技术人员。; 使用场景及目标:①应用于无人车在重复任务下的高精度路径跟踪控制;②为缺乏精确数学模型的非线性系统提供有效的控制策略设计思路;③作为科研复现算法验证的学习资源,推动数据驱动控制方法的研究应用。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注神经网络ILC的结合机制,并尝试在不同仿真环境中进行参数调优性能对比,以掌握数据驱动控制的核心思想工程应用技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值