Yoshua Bengio新书《Deep Learning》深度学习(中文)学习笔记(improving)

版权声明:本文为博主在研究工作中经验分享,包括学习笔记、摘录、研究成果,以便以后工作参考之用,欢迎交流和批评;其中参考资料的标注难免会有疏漏之处,以及其它欠妥之处,如有请告知,立马更正,致歉,谢谢;未经博主允许不得转载。 https://blog.csdn.net/forest_world/article/details/53520545

Yoshua Bengio新书《Deep Learning》深度学习(中文)学习笔记:
http://download.csdn.net/detail/forest_world/9705797 深度学习(中文)

下载链接:https://github.com/exacity/deeplearningbook-chinese/raw/master/dlbook_cn_initial.pdf

http://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650721121&idx=5&sn=5af0fb9465ce9345c017adfb1d0c9796&chksm=871b0f1fb06c8609b8b9d792b222b16f7b6fa4479a6d426663ab03cf1ebebd5209080bebe48b&mpshare=1&scene=23&srcid=12080t4UtBWuluCqZbXoS3TC#rd

本书目录:

第一章、前言

第二章、线性代数

第三章、概率与信息

第四章 、数值计算

第五章、机器学习基础

第六章、深度前馈网络

第七章、深度学习的正则化

第八章、深度模型中的优化

第九章、卷积神经网络

第十章、序列建模:循环和递归网络

第十一章、实用方法

第十二章、应用

第十三章、linear factor

第十四章、自动编码

第十五章、表征学习

第十六章、结构概率模型

第十七章、monte carlo 方法

第十八章、面对区分函数

第十九章、近似推断

展开阅读全文

没有更多推荐了,返回首页