因Java漏洞,Facebook遭受恶意软件攻击

因Java漏洞,Facebook遭受恶意软件攻击

发表于 9小时前835次阅读| 来源 Gigaom5 条评论| 作者 Kevin Fitchard
摘要:Facebook周五透露,上个月公司内部系统成为恶意攻击的目标。但Facebook表示,目前威胁已得以遏制,并且没有证据表明Facebook的用户数据被盗用。目前,Facebook正在与执法部门和其他目标公司密切合作,但到目前为止,造成此次攻击的黑客组织尚未被确定。

Gigaom的Kevin Fitchard今天撰文称,Facebook上个月遭到黑客的恶意攻击,但并没有证据表明Facebook的用户数据被盗用。 

以下为文章全文:

Facebook的CEO Mark Zuckerberg喜欢将他的社交网络公司比喻成具有“黑客之路”的精神特质的公司,但是Facebook最近遇到黑客团体的一系列攻击。Facebook于周五透露,上个月公司内部系统成为恶意攻击的目标。Facebook在其博客中表示,目前威胁已得以遏制,并且没有证据表明Facebook的用户数据被盗用。

下面是其 博客内容:

上个月,Facebook的安全部门发现我们的公司内部系统成为了黑客攻击的目标,少数员工访问一个存在安全隐患的移动开发者网站导致了这次袭击事件的发生。访问这个受感染的开发网站,导致恶意软件被安装在员工的笔记本电脑中。我们在这个笔记本电脑中安装了最新的补丁,并且运行最新的杀毒软件。我们发现了存在的恶意软件后,立即修复了所有受感染的机器,同时联系了执法机关,展开了一项重大的调查,一直持续到现在。

我们并未发现有任何证据表明Facebook的用户数据受到损害。

我们正在加强我们自己的内部工程团队与其他公司的安全团队的联系,并与执法部门一起去了解一切可能的攻击,以防止此类事件的再次发生。

博客中接着说,恶意软件利用一个所谓的“Java零日漏洞”,访问被盗用网站同时在浏览器中开启Java功能的用户最容易受到攻击。Facebook的安全团队跟踪攻击到一个可疑的域,随后通知了Java的霸主——甲骨文,甲骨文于2月1日提供了一个补丁来修复这个漏洞。

Facebook表示,它并不是唯一一家被攻击的公司,但它是第一个识别它的公司。社交巨头表示,它正在与执法部门和其他目标公司密切合作,但到目前为止,造成此次攻击的黑客组织尚未被确定。

Facebook并没有肯定表示没有用户数据被窃取。它只是说,它没有发现资料被泄漏的证据。Facebook也没有透露任何黑客们可能窃取的数据细节。(王旭东/编译 仲浩/审校)

本文来自: Gigaom

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值