# Matlab分类器大全

train_data是训练特征数据, train_label是分类标签。
Predict_label是预测的标签。
MatLab训练数据, 得到语义标签向量 Scores(概率输出)。

1.逻辑回归(多项式MultiNomial logistic Regression)

Factor = mnrfit(train_data, train_label);
Scores = mnrval(Factor, test_data);

scores是语义向量(概率输出)。对高维特征，吃不消。

2.随机森林分类器（Random Forest）

Factor = TreeBagger(nTree, train_data, train_label);
[Predict_label,Scores] = predict(Factor, test_data);

scores是语义向量(概率输出)。实验中nTree = 500。

3.朴素贝叶斯分类（Naive Bayes）

Factor = NaiveBayes.fit(train_data, train_label);
Scores = posterior(Factor, test_data);
[Scores,Predict_label] = posterior(Factor, test_data);
Predict_label = predict(Factor, test_data);
accuracy = length(find(predict_label == test_label))/length(test_label)*100;

4.支持向量机SVM分类

Factor = svmtrain(train_data, train_label);
predict_label = svmclassify(Factor, test_data);

Factor = svmtrain(train_label, train_data, '-b 1');
[predicted_label, accuracy, Scores] = svmpredict(test_label, test_data, Factor, '-b 1');

5.K近邻分类器 （KNN）

predict_label = knnclassify(test_data, train_data,train_label, num_neighbors);
accuracy = length(find(predict_label == test_label))/length(test_label)*100;

IDX = knnsearch(train_data, test_data);
IDX = knnsearch(train_data, test_data, 'K', num_neighbors);
[IDX, Dist] = knnsearch(train_data, test_data, 'K', num_neighbors);

IDX是近邻样本的下标集合，Dist是距离集合。

Matlab 2012新版本:

Factor = ClassificationKNN.fit(train_data, train_label, 'NumNeighbors', num_neighbors);
predict_label = predict(Factor, test_data);
[predict_label, Scores] = predict(Factor, test_data);

6.集成学习器（Ensembles for Boosting, Bagging, or Random Subspace）
Matlab 2012新版本:

Factor = fitensemble(train_data, train_label, 'AdaBoostM2', 100, 'tree');
Factor = fitensemble(train_data, train_label, 'AdaBoostM2', 100, 'tree', 'type', 'classification');
Factor = fitensemble(train_data, train_label, 'Subspace', 50, 'KNN');
predict_label = predict(Factor, test_data);
[predict_label, Scores] = predict(Factor, test_data);

7.判别分析分类器（discriminant analysis classifier）

Factor = ClassificationDiscriminant.fit(train_data, train_label);
Factor = ClassificationDiscriminant.fit(train_data, train_label, 'discrimType', '判别类型:伪线性...');
predict_label = predict(Factor, test_data);
[predict_label, Scores] = predict(Factor, test_data);

04-21
11-03

06-14
05-04
01-12
05-04
01-20
07-18
11-10 8561
04-25 1万+
04-14 1567
12-24 330
01-09 1505
04-05 4万+
01-12 353
05-11
07-11 1万+
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林