矩阵的卷积

一个矩阵与另一个矩阵的卷积运算大部分运用在图像处理上,例如用一个模板去对一幅图像进行卷积。

把模板(n*n)放在矩阵上(中心对准要处理的元素),用模板的每个元素去乘矩阵中的的元素,累加和等于这个元素例如例子中的第二行第二个元素16= 1*2+1*1+1*3+1*1+1*2+1*1+1*2+1*1+1*2+1*1+1*3的计算,依次计算每个元素的值,如果矩阵的中心在边缘就要将原矩阵进行扩展,例如补0,或者直接规定模板的中心距离边缘(n-1)/2个单位以上。

以下举一个简单的例子,并用Matlab来观察

相关MATALB代码

a=[2 1 3 1;1 2 1 2;2 1 3 2;1 3 1 2];
b=[1 1 1;1 1 1;1 1 1];
c=conv2(a,b,'same');
d=conv2(a,b,'full');
fprintf('\na = \n');
disp(a);
fprintf('\nb = \n');
disp(b);
fprintf('\nc = \n');
disp(c);
fprintf('\nd = \n');
disp(d);


MATALB仿真结果

a = 
     2     1     3     1
     1     2     1     2
     2     1     3     2
     1     3     1     2

b = 
     1     1     1
     1     1     1
     1     1     1

c = 
     6    10    10     7
     9    16    16    12
    10    15    17    11
     7    11    12     8

d = 
     2     3     6     5     4     1
     3     6    10    10     7     3
     5     9    16    16    12     5
     4    10    15    17    11     6
     3     7    11    12     8     4
     1     4     5     6     3     2

卷积的计算步骤:
(1)    卷积核绕自己的核心元素顺时针旋转180度(这个千万不要忘了)
(2)    移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
(3)    在旋转后的卷积核中,将输入图像的像素值作为权重相乘
(4)    第三步各结果的和做为该输入像素对应的输出像素

请看用水平和垂直差分算子对矩阵处理后的结果,然后细细体会

a = 
     2     1     3     1
     1     2     1     2
     2     1     3     2
     1     3     1     2
b = 
    -1    -1    -1
     0     0     0
     1     1     1
e = 
    -1     0     1
    -1     0     1
    -1     0     1

c = 
    -3    -4    -5    -3
     0     0    -1    -1
    -1    -1    -1     0
     3     6     6     5

d = 
    -3    -1     0     4
    -4    -2    -1     7
    -6    -1     0     5
    -4    -1     0     4

发布了10 篇原创文章 · 获赞 20 · 访问量 16万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览