车站调度问题

题目描述
有顺序排列的1,2, 3,…,n节车厢在入站口等待调度。车站设置了一个栈作为缓冲,这样的话只可能进行下列两个操作之一:

      (1)如果还有车厢在入站口,将最前面的入栈缓冲

      (2)将栈顶的车厢驶出车站   

给定一个1至n的排列,问其作为出站序列是否合法。


注意:入站顺序为1,2, 3,…,n,即1先入栈...,n最后入栈。

输入
输入包含若干测试用例。每一个测试用例由多行组成。第一行是两个整数n(1<=n <= 100)和m,n表示入站序列为1至n。m表示随后有m行出站序列。

当n,m均为0时表示输入结束。

输出
对应每一个出站序列,合法则输出一行YES,否则输出一行NO。

样例输入
3 6
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
0 0

样例输出
YES
YES
YES
YES
NO
YES

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define OK 1
#define OVERFLOW -2
#define ERROR 0 
#define TRUE 1
#define FALSE 0
#define   STACK_INIT_SIZE   100
#define   STACKINCREMENT       10
typedef int Status;
typedef   int     SElemType; 
typedef struct {
        SElemType    *base;          
        SElemType    *top;            
        int        stacksize;      
}SqStack;
Status InitStack(SqStack &S) {

        S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));
        if(!S.base) return OVERFLOW;
        S.top=S.base;
        S.stacksize=STACK_INIT_SIZE;
        return OK;
}
/*Status DestroyStack(SqStack &S) {

SElemType    *p;
if(S.base) {
for(p=--S.top;p>S.base;p--)
free(p);
free(S.base);
}
return OK;
}
Status ClearStack(SqStack &S) {

if(!S.base) return ERROR; 
S.top=S.base;
return OK;
}*/
Status StackEmpty(SqStack S) {

        if(S.top==S.base) return TRUE;
        else                 return FALSE;
}
Status GetTop(SqStack S,SElemType &e) {

        if(!S.base) return ERROR;
        e=*(S.top-1);
        return e;
}
Status Push(SqStack &S,SElemType e) {

        if(!S.base) return ERROR;
        if(S.top-S.base>=S.stacksize) {
                S.base=(SElemType *)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(SElemType));
                if(!S.base) return OVERFLOW;
                S.top=S.base+S.stacksize;
                S.stacksize+=STACKINCREMENT;
        }
        *S.top++=e;
        return OK;
}
Status Pop(SqStack &S,SElemType &e) {

        if(S.top==S.base) return ERROR;
        e=*(--S.top);
        return OK;
}
/* check the stack out seqence is valid or not 
*
* Return value:
*  >0 : valid
*  =0 : invalid
*  <0 : error occured
*/
int check_valid (char in[], char out[], int length)
{
        int i=0, j=0;  
        SElemType e;
        SqStack s;
        //InitStack(Sqstack s);                // 这样的错误不应该!
        InitStack(s);
        if (in==NULL || out==NULL || length <=0)      
                return -1;  

        for (i=0; i<length; i++)
        {
                Push(s,in[i]);        
                while (!StackEmpty(s) && GetTop(s,e)==out[j]) {
                        Pop(s,e);  
                        j++;
                }
        }
        if (StackEmpty(s))
                return 1;
        return 0;
}
int main (int argc, char *argv[])
{
        int n,m;
        int i;
        char in[101],out[101];
        printf("请输入序列的元素个数以及出栈的组数:");//中间用空格隔开
        scanf("%d %d", &n, &m);
        
        printf("请输入原始序列:");
        scanf("%s",&in);//输入方式修改成这样
        /*for(i=1;i<=n;i++)
        {
                in[i-1]=i;//输入序列
        }*/
        printf("请输入可能的出栈顺序:\n");
        while(n!=0 && m!=0)
        {
                for(i=1;i<=m;i++)
                {
                        scanf("%s",out);
                        if( check_valid(in,out,n)>0)
                                printf("YES\n");
                        else
                                printf("NO\n");
                }
        }
        return 0;

        
}


 

 

摘 要 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。 本题要我们得出一个最优的公交车调度方案,通过分析题中所给数据与要,得出此题为多目标线性规划问题。由于涉及到多目标,为了便于解要将多目标转化为单目标规划模型,由于题中所给目标具有抽象性,因此需要先根据所给资料对目标进行定量化分析,即选择合适的参数表示目标函数,本文采用等车时间与乘车时拥挤程度表示乘客的利益,平均载客率表示公交公司的利益,显然这两者的关系是互斥的,即公交车数量越少,虽公交公司利益最大化,但等车时间越长,拥挤程度更大,造成乘客抱怨度更高。由此,本文建立了两个模型,关于模型Ⅰ,将公交公司的利益作为目标函数,为了照顾乘客的满意度,考虑在早高峰时间将等车时间尽量缩短至少于5分钟,其他时间段都控制在5到10分钟之内,建立单目标的最小车次线性规划模型并运用LINGO软件得公交车的调度车次。最终得到最优方案中需要62辆公交车,具体调度方案见附录中表5-1。关于模型Ⅱ,我们主要利用模糊数学及层次分析法设置加权因子将其转化为单目标优化问题,并判断在模型Ⅰ的情况下该放宽还是加紧约束条件才可得到最优解,在其他时段则优先考虑公交车公司的满意度,并用MATLAB拟合公交公司与乘客的满意度。最终得到最优方案中需要64辆公交车,具体调度方案见附录中表5-2。 最后,我们对两个模型进行了误差分析与稳定性分析,通过误差分析得到本文模型仍存在误差,误差与提供的数据本身以及模型的假设均有关。因此为了减少误差,使结果更加准确,我们需要更加准确的各时间段客流量数据,且时间间隔越短可以使结果更加精确,更有实用价值。通过稳定性分析发现在对最大满载率及乘客在一般时间内的等待时间做微小变动时,模型Ⅰ、Ⅱ 结果都没有太大变化,由此可知两个模型的稳定性都比较好。 本文中的模型通俗易懂,易于用软件得到确切结果,具有实际意义,但考虑因素还不够全面,应当结合实际多方面的情况,设计出更加优化的调度方案,模型较稳定,具有推广意义。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值