排序:
默认
按更新时间
按访问量

全变分

全变分在图像处理中最直接和最有效的应用莫过于图像去噪和复原,1992年的ROF模型应该算是全变分最经典的模型,之后全变分在图像处理中的应用就变的多了起来。 其中Tony F.Chan http://www.math.ucla.edu/~chan/ 的工作值得关注,Tony F.Chan 陈繁...

2012-11-15 10:56:24

阅读数:4009

评论数:1

车牌识别及验证码识别的一般思路

全文分两部分,第一部分讲车牌识别及普通验证码这一类识别的普通方法,第二部分讲对类似QQ验证码,Gmail验证码这一类变态验证码的识别方法和思路。 算法概述如下:   一、车牌/验证码识别的普通方法   车牌、验证码识别的普通方法为: (1)       将图片灰度化与二值化 ...

2012-09-20 15:58:29

阅读数:1154

评论数:0

从头到尾彻底理解傅里叶变换算法

上:http://blog.csdn.net/v_july_v/article/details/6196862 下:http://blog.csdn.net/v_july_v/article/details/6200945

2012-09-06 09:05:54

阅读数:978

评论数:0

图像去模糊之初探--Single Image Motion Deblurring

原文连接:http://blog.csdn.net/dcraw/article/details/5849538 图像的模糊按照模糊核的性质来分类可分为: Blind image deconvolution(BID 芒去卷积)和Non-blind image deconvoluti...

2012-08-17 16:45:49

阅读数:3046

评论数:0

图像处理与计算机视觉资源汇总——论文+代码+教材+视频等等

历时一个多月,终于用业余时间把这些资料整理出来了,总算了却了一块心病,也不至于再看着一堆资料发愁了。以后可能会有些小修小补,但不会有太大的变化了。万里长征走完了第一步,剩下的就是理解和消化了。借新浪ishare共享出来,希望能够对你的科研也有一定的帮助。 UIUC的Jia-Bin...

2012-07-09 11:16:06

阅读数:5742

评论数:4

Adaboost

Adaboost 在学习AdaBoosting和online Boosting, 最好有bagging和boosting基础,这样看起来比较会比较顺。有空再补上。 AdaBoost 算法的主要思想之一就是在训练集上维护一套权重分布,初始化时 ,Adaboost 为训练集的每个训练例指定...

2012-06-14 10:16:22

阅读数:852

评论数:0

boosting

bagging,boosting,adboost,random forests都属于集成学习范畴.  在boosting算法产生之前,还出现过两种比较重要的算法,即boostrapping方法和bagging方法。首先介绍一下这二个算法思路: 从整体样本集合中,抽样n*  N个样本 ...

2012-06-14 10:08:26

阅读数:677

评论数:0

线性回归,偏差、方差权衡

版权声明:     本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。如果有问题,请联系作者 wheeleast@gmail.com 前言:     距...

2012-06-14 09:48:46

阅读数:2645

评论数:1

回归(regression)、梯度下降(gradient descent)

版权声明:    本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。 前言:    上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任...

2012-06-14 09:47:42

阅读数:852

评论数:0

bootstrap bagging boosting

bootstrap bagging boosting这几个概念经常用到,现仔细学习了一下: 他们都属于集成学习方法,(如:Bagging,Boosting,Stacking),将训练的学习器集成在一起,原理来源于PAC学习模型(Probably Approximately Correct...

2012-06-13 17:29:55

阅读数:2285

评论数:0

对集成学习的初步理解

对集成学习的初步理解       最近在看一些集成学习方面的知识,其中南京大学的周志华教授写的几篇关于集成学习综述性的文章还不错。看了下对集成学习有了一个初步的了解,如下:       集成学习是机器学习中一个非常重要且热门的分支,是用多个弱分类器构成一个强分类器,其哲学思想是“三个臭皮匠...

2012-06-13 17:28:45

阅读数:1079

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭