Tensorflow分批量读取数据

Tensorflow分批量读取数据

之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1)。如果加入batch,比如batch大小为5,那么拿到的tensor的rank就变成了3,大小为5*92*112。

下面规则化的写一下读取数据的一般流程,按照官网的实例,一般把读取数据拆分成两个大部分,一个是函数专门负责读取数据和解码数据,一个函数则负责生产batch。

import tensorflow as tf

def read_data(fileNameQue):

    reader = tf.TFRecordReader()
    key, value = reader.read(fileNameQue)
    features = tf.parse_single_example(value, features={'label': tf.FixedLenFeature([], tf.int64),
                                                        'img': tf.FixedLenFeature([], tf.string),})
    img = tf.decode_raw(features["img"], tf.uint8)
    img = tf.reshape(img, [92,112]) # 恢复图像原始大小
    label = tf.cast(features["label"], tf.int32)

    return img, label

def batch_input(filename, batchSize):

    fileNameQue = tf.train.string_input_producer([filename], shuffle=True)
    img, label = read_data(fileNameQue) # fetch图像和label
    min_after_dequeue = 1000
    capacity = min_after_dequeue+3*batchSize
    # 预取图像和label并随机打乱,组成batch,此时tensor rank发生了变化,多了一个batch大小的维度
    exampleBatch,labelBatch = tf.train.shuffle_batch([img, label],batch_size=batchSize, capacity=capacity,
                                                     min_after_dequeue=min_after_dequeue)
    return exampleBatch,labelBatch

if __name__ == "__main__":

    init = tf.initialize_all_variables()
    exampleBatch, labelBatch = batch_input("./data/faceTF.tfrecords", batchSize=10)

    with tf.Session() as sess:

        sess.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        for i in range(100):
            example, label = sess.run([exampleBatch, labelBatch])
            print(example.shape)

        coord.request_stop()
        coord.join(threads)

读取数据和解码数据与之前基本相同,针对不同格式数据集使用不同阅读器和解码器即可,后面是产生batch,核心是tf.train.shuffle_batch这个函数,它相当于一个蓄水池的功能,第一个参数代表蓄水池的入水口,也就是逐个读取到的记录,batch_size自然就是batch的大小了,capacity是蓄水池的容量,表示能容纳多少个样本,min_after_dequeue是指出队操作后还可以供随机采样出批量数据的样本池大小,显然,capacity要大于min_after_dequeue,官网推荐:min_after_dequeue + (num_threads + a small safety margin) * batch_size,还有一个参数就是num_threads,表示所用线程数目。

min_after_dequeue这个值越大,随机采样的效果越好,但是消耗的内存也越大。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于⼤数据平台数据析技术选型调研 技术选型调研 ⼤⽅向任务 布式平台 选出⼏个可⾏的⽅案 析优缺点 任务细: 数据源存储的问题 ⽀持布式的深度学习组件 业内端到端的解决⽅案有哪些——可借鉴的架构⽅案 ⽅案路线 1. hdfs -> mapreduce -> hive(on spark/Tez) -> 提取⼩批量数据 -> 预建模预析:sklearn/Tensorflow 2. hdfs -> yarn -> spark -> spark mllib/TensorFlowonSpark/BigDL 数据存储 布式⽂件系统–HDFS 布式关系型数据库–Hive 优点: 1. 将sql转化为MapReduce,适⽤于离线批处理环境 2. Hive的执⾏延迟⽐较⾼,因此Hive常⽤于数据析,对实时性要求不⾼的场合 3. Hive 优势在于处理⼤数据 4. Hive ⽀持⽤户⾃定义函数,⽤户可以根据⾃⼰的需求来实现⾃⼰的函数 缺点: 1. 基于MapReduce,速度慢 2. Hive调优⽐较困难,粒度较粗 3. 迭代式算法⽆法表达 4. 由于 MapReduce 数据处理流程的限制,效率更⾼的算法却⽆法实现 布式⾮关系型数据库–HBase 优点: 1. 容量⼤:Hbase单表可以有百亿⾏、百万列,数据矩阵横向和纵向两个维度所⽀持的数据量级都⾮常具有弹性 2. 列存储:其数据在表中是按照某列存储的,这样在查询只需要少数⼏个字段的时候,能⼤⼤减少读取的数量,可以动态增加列 3. ⾼可⽤,依赖于Zookeeper 4. 写⼊速度快,适⽤于读少写多的场景 5. 稀疏性,为空的列并不占⽤存储空间,表可以设计的⾮常稀疏。不需要null填充 缺点: 1. 不能⽀持条件查询,只⽀持按照row key来查询 2. 只能在主键上索引和排序 3. 对join以及多表合并数据的查询性能不好 4. 更新过程中有⼤量的写⼊和删除操作,需要频繁合并和裂,降低存储效率 优化:Hive on Tez / Spark 使⽤Tez和Spark替代MapReduce,达到提⾼Hive执⾏效率的⽬的 计算引擎 Spark ⽬前Spark⽀持三种布式部署⽅式,别是 standalone spark on MESOS spark on YARN(较流⾏) 优点:(与MapReduce相⽐) 1. 能处理循环迭代式数据流处理 2. 适⽤于多并⾏的数据可复⽤场景(如:机器学习、图挖掘算法、交互式数据挖掘算法) 3. RDD提供了⽐MapReduce 丰富的模型,可以快速在内存中对数据集进⾏多次迭代,来⽀持复杂的数据挖掘算法和图形计算算法 4. Spark 多个作业之间数据通信是基于内存,效率更⾼ 缺点: 1. Spark 是基于内存的,由于内存的限制,可能会由于内存资源不够导致 Job 执⾏失败 算法层 SparkMLlib ⽀持的语⾔:python,scala,java ⽀持的⽂件系统:HDFS ⽀持的数据库:Hive,HBase ⽀持的算法:类,聚类,回归,降维,协同过滤 优点: 1. Spark善于处理机器学习中迭代式运算,基于内存,因此迭代结果不会落在磁盘中 2. 可以使⽤Spark其他的衍⽣⼯具 缺点: 1. 缺少深度学习算法框架 Mahout ⽀持的语⾔:java,scala ⽀持的⽂件系统:HDFS ⽀持的数据库:Hive,HBase ⽀持的算法:类,聚类,回归,降维,协同过滤 优点: 1. 基于hadoop实现 2. 利⽤MapReduce计算引擎,提升了算法可处理的数据量和处理性能。 缺点: 1. 由于实现算法需要MR化,所以实现的算法相对较少 2. 学习资料较少,官⽹提供的相关⽂档并没有很详细的关于每个算法的使⽤教程。 3. 不⽀持深度学习 TensorFlowOnSpark 使Spark能够利⽤TensorFlow拥有深度学习和GPU加速计算的能⼒,⽬前被⽤于雅虎私有云的Hadoop集群中 ⽀持的语⾔:python ⽀持的⽂件系统:HDFS ⽀持的计算引擎:Spark [外链图⽚转存失败,源站可能有防盗链机制,建议将图⽚保存下来直接上传(img-LLlTJW0P-1615273602194) (C:\Users\Lenovo\AppData\Roaming\Typora\typora-user-images\image-20210124224553335.png)] 优点: 1. 可⽤于⽣产环境 2. ⽀持所有TensorFlow功能 3. 轻松移植现有TensorFlow程序到Spark集群上 4. 轻松整合现有的数据处理流程和机器学习算法 5. 更新频率⾼,且⽀持最新版本的TensorFlow和Spark 6. 代码量少便于⼆次
TensorFlow是一个开源的机器学习框架,通常用于创建神经网络模型。在训练模型之前,需要准备好数据集,本文将介绍如何使用TensorFlow读取数据TensorFlow提供了多种读取数据的方法,其中最常用的是使用tf.data模块。首先,我们需要定义一个数据集对象,并通过读取文件的方式将数据加载进来。TensorFlow支持多种文件格式,如csv、txt、json、tfrecord等,可以根据自己的需求选择合适的格式。 加载数据后,我们可以对数据进行一些预处理,比如做数据增强、进行归一化等操作。预处理完数据后,我们需要将数据转化为张量类型,并将其打包成batch。通过这种方式,我们可以在每次训练中同时处理多个数据。 随后,我们可以使用tf.data.Dataset中的shuffle()函数打乱数据集顺序,防止模型只学习到特定顺序下的模式,然后使用batch()函数将数据划成批次。最后,我们可以使用repeat()函数让数据集每次可以被使用多次,达到更好的效果。 在TensorFlow中,我们可以通过输入函数将数据集传入模型中,使模型能够直接从数据集中读取数据。使用输入函数还有一个好处,即能够在模型训练时动态地修改数据的内容,特别是在使用esimator模块进行模型训练时,输入函数是必须要的。 总结一下,在TensorFlow读取数据的流程如下:定义数据集对象-读取文件-预处理数据-打包数据为batch-打乱数据集-划批次数据-重复数据集-使用输入函数读取数据。 在实际应用过程中,我们还可以通过其他方式来读取数据,如使用numpy、pandas等工具库,也可以自定义数据集类来处理数据。无论使用何种方式,读取数据都是机器学习训练中重要的一步,需要仔细处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

freedom098

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值