数值分析智力题

转:https://blog.csdn.net/Yolanda_NuoNuo/article/details/39962709

导读:

       1、老鼠与毒药问题

       2、海盗分金问题

       3、坏硬币问题/称球问题

       4、跳棋问题

       5、疯狗/帽子问题

       6、三个宝盒的概率问题

       7、分金条问题

       8、猴子搬香蕉问题

       9、飞机加油问题

       10、博弈类取物游戏

       11、倒水/倒酒问题

       12、黑白帽子问题

       13、汽水瓶/等比数列求和问题

       14、过桥问题

       15、年龄问题

       16、移动数字类型

       17、几道有意思的智力面试题


导语:

       部分真题来自搜狐、网易、360等笔试题。题型选取此类问题的经典问题解析。

       本专题主要总结了IT企业产品类笔面试题常见数字智力题。当然不排除和行测题、程序员面试中的智力题相同,可酌情参考。

       专题涉及到博弈类等比较复杂的理论,如果有兴趣可点击超链接自行研究。产品类建议题目看一看即可,没有太大必要逐题推导求证(当然,如果你有时间并且热爱,可以参考各题后进阶部分),毕竟智力题多部分是选择题,产品类应该在主观题体现出产品的意识。

       每个题型私人或多或少做了批注,确定题型解题思想,并且汇总了尽可能详尽的资料(超链接的方式可点击),欢迎交流。


备注:

       请尊重劳动成果,保持良好的版权意识。谢谢!

       文内提供部分考证时援引资料的下载链接、网易游戏真题下载、各题型更详尽分析网络资料,欢迎猛击!

 

前言:

     前段时间的校园招聘尘埃落定,决定还是汇集下所获所得,给自己的校招求职画个句号,也算是功德圆满。

     以下汇总产品类职位常见笔面试题型,数值逻辑类给出了正确解题思路。对于分类题型,可点击链接查看此类问题详细解读

 

正文:笔面试中的数值逻辑智力题-产品类、行测类题型

  

    大部分产品类笔试题不会涉及到大量数值逻辑题,基本以数学能力考察(简单的数值计算为主)、图形分析能力(行测题中也经常有的图形规律)   和产品策划/运营为主。

   通常应当保证此类选择题的正确率即可,产品类的笔试题更看重主观题体现出的产品意识。当然,前提是,不要把自己的客观题做的一塌糊涂,惨不忍睹

 

1、老鼠与毒药问题(2012年10月 360校招产品类笔试题   点击查看详细解答)

【题目】:

       有 1000 个一模一样的瓶子,其中有 999 瓶是普通的水,有一瓶是毒药。任何喝下毒药的生物都会在一星期之后死亡,最少需要多少只小白鼠检验出哪个瓶子里有毒药?最少需要多少只小白鼠?

 

【答案】:

       把瓶子从 0 到 999 依次编号,然后全部转换为 10 位二进制数。让第一只老鼠喝掉所有二进制数右起第一位是 1 的瓶子,让第二只老鼠喝掉所有二进制数右起第二位是 1 的瓶子,等等。一星期后,如果第一只老鼠死了,就知道毒药瓶子的二进制编号中,右起第一位是 1 ;如果第二只老鼠没死,就知道毒药瓶子的二进制编号中,右起第二位是 0 ⋯⋯每只老鼠的死活都能确定出 10 位二进制数的其中一位,由此便可知道毒药瓶子的编号了。

       2^10=1024,所以最少10只

(解题思想,有毒无毒对应2进制两个状态位)

 

【进阶】:

       如果你有两个星期的时间(换句话说你可以做两轮实验),为了从 1000 个瓶子中找出毒药,你最少需要几只老鼠?注意,在第一轮实验中死掉的老鼠,就无法继续参与第二次实验了。

 

【答案】:

       7 只老鼠就足够了。事实上,7 只老鼠足以从 37 = 2187 个瓶子中找出毒药来。首先,把所有瓶子从 0 到 2186 编号,然后全部转换为 7 位三进制数。现在,让第一只老鼠喝掉所有三进制数右起第一位是 2 的瓶子,让第二只老鼠喝掉所有三进制数右起第二位是 2 的瓶子,等等。一星期之后,如果第一只老鼠死了,就知道毒药瓶子的三进制编号中,右起第一位是 2 ;如果第二只老鼠没死,就知道毒药瓶子的三进制编号中,右起第二位不是 2,只可能是 0 或者 1 ⋯⋯也就是说,每只死掉的老鼠都用自己的生命确定出了,三进制编号中自己负责的那一位是 2 ;但每只活着的老鼠都只能确定,它所负责的那一位不是 2 。于是,问题就归约到了只剩一个星期时的情况。在第二轮实验里,让每只活着的老鼠继续自己未完成的任务,喝掉它负责的那一位是 1 的所有瓶子。再过一星期,毒药瓶子的三进制编号便能全部揭晓了。

总结:类似地,我们可以证明, n 只小白鼠 t 周的时间可以从 (t+1)n 个瓶子中检验出毒药来。

       

2、海盗分金问题(2012年9月 网易游戏虚拟世界架构师笔试题  点击查看详细解答)

【题目】:

       5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?

 

【答案】:

       从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。

 

  3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

 

  不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。

 

  同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。

 

【网易游戏题目变种】:

       已知三个枪手A、B、C命中率30%、50%、100%;进行多轮互射的情况下,每轮每个人可以选择射击一个或者谁也不射击;假设每个人都能很理智地做出判断,从而做出选择。问题:A怎样做才能让自己活得更久?

 

【解答】:

       这道题严格意义上不能算海盗分金问题,因为射击过程是同时进行的,不存在倒推的逻辑。如果有任何解题思路欢迎留言解答。也可以在知乎话题下留言

 

3、坏硬币问题/称球问题(2012年10月   360校招助理产品经理笔试题 点击查看详细解答


【经典题目】:

     经常以称球问题的形式出现,比如:有十二个外表相同的球,其中有一个坏球,它的重量和其它十一个有轻微的(但是可以测量出来的)差别。现在有一架没有砝码的很灵敏的天平,问如何用最少的次数保证找出那个坏球,并知道它比标准球重还是轻

【答案】:

将十二个球编号为1-12。

第一次,先将1-4号放在左边,5-8号放在右边。
  1.如果右重则坏球在1-8号。
    第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
    在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
      1.如果右重则坏球在没有被触动的1,5号。如果是1号,
       则它比标准球轻;如果是5号,则它比标准球重。
        第三次将1号放在左边,2号放在右边。
          1.如果右重则1号是坏球且比标准球轻;
          2.如果平衡则5号是坏球且比标准球重;
          3.这次不可能左重。
      2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻。
        第三次将2号放在左边,3号放在右边。
          1.如果右重则2号是坏球且比标准球轻;
          2.如果平衡则4号是坏球且比标准球轻;
          3.如果左重则3号是坏球且比标准球轻。
      3.如果左重则坏球在拿到左边的6-8号,且比标准球重。
        第三次将6号放在左边,7号放在右边。
          1.如果右重则7号是坏球且比标准球重;
          2.如果平衡则8号是坏球且比标准球重;
          3.如果左重则6号是坏球且比标准球重。
  2.如果天平平衡,则坏球在9-12号。
    第二次将1-3号放在左边,9-11号放在右边。
      1.如果右重则坏球在9-11号且坏球较重。
        第三次将9号放在左边,10号放在右边。
          1.如果右重则10号是坏球且比标准球重;
          2.如果平衡则11号是坏球且比标准球重;
          3.如果左重则9号是坏球且比标准球重。
      2.如果平衡则坏球为12号。
        第三次将1号放在左边,12号放在右边。
          1.如果右重则12号是坏球且比标准球重;
          2.这次不可能平衡;
          3.如果左重则12号是坏球且比标准球轻。
      3.如果左重则坏球在9-11号且坏球较轻。
        第三次将9号放在左边,10号放在右边。
          1.如果右重则9号是坏球且比标准球轻;
          2.如果平衡则11号是坏球且比标准球轻;
          3.如果左重则10号是坏球且比标准球轻。
  3.如果左重则坏球在1-8号。
    第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
    在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
      1.如果右重则坏球在拿到左边的6-8号,且比标准球轻。
        第三次将6号放在左边,7号放在右边。
          1.如果右重则6号是坏球且比标准球轻;
          2.如果平衡则8号是坏球且比标准球轻;
          3.如果左重则7号是坏球且比标准球轻。
      2.如果平衡则坏球在被拿掉的2-4号,且比标准球重。
        第三次将2号放在左边,3号放在右边。
          1.如果右重则3号是坏球且比标准球重;
          2.如果平衡则4号是坏球且比标准球重;
          3.如果左重则2号是坏球且比标准球重。
      3.如果左重则坏球在没有被触动的1,5号。如果是1号,
       则它比标准球重;如果是5号,则它比标准球轻。
        第三次将1号放在左边,2号放在右边。
          1.这次不可能右重。
          2.如果平衡则5号是坏球且比标准球轻;
          3.如果左重则1号是坏球且比标准球重;

  
其实里面有许多情况是对称的,比如第一次称时的右重和右轻,只需考虑一种就可以了,另一种完全可以比照执行。

     稍微试一下,就可以知道只称两次是不可能保证找到坏球的。如果给的是十三个球,以上的解法也基本有效,只是要有个小小的改动,就是在这种情况下,在第一第二次都平衡的时候,第三次还是有可能平衡(就是上面的第2.2.2步),那么我们可以肯定坏球是13号球,可是我们没法知道它到底是比标准球轻,还是比标准球重。如果给的是十四个球,我们会发现无论如何也不可能只称三次,就保证找出坏球。


【进阶】:对于给定的自然数N,我们怎么来解有N个球的称球问题?

    的确有兴趣深究这个问题的可以点击坏硬币问题详细查看解答。这只是一类数学趣题,典型的问题被称为“ counterfeit coin problem ”和 “ odd ball ( or coin) problem "即坏硬币问题。

   对于数学趣题,有本书挺不错《蚁迹寻踪及其他数学探索》,坏硬币问题在第12章有详细分析

   

4、跳棋问题(2011年网易游戏产品类试题)

附2012网易游戏产品设计师/虚拟架构师笔试题,点击下载


注:不存在所谓的跳棋问题,只是笔者本人自己形象化的描述,欢迎专业人员指正。跳棋问题的实质是,可以向前一步或者跳一步,两边对称,中间只有一个空余位置,最终完成两边的互换


【题目】:

   蒸汽列车的速度不慢,经过一夜的旅行,你到达了学院门口,却发现前面是一道61环铁索桥,上面挤满了30只毛草球和30只龙龟(如图中所示)。毛草球在左侧,他们想到学院里去(到右侧);龙龟在右侧,他们想出来(到左侧)。但他们都不愿给对方让路。行动规则如下:

   (1)当毛草球(或龙龟)前面的铁环为空时,它可以走过去

   (2)当毛草球(或龙龟)前面虽然有其它毛草球(或龙龟),但是再前面的铁环为空时,它可以跳过去;

   (3)毛草球已经非常着急了,第一步要安排毛草球行动;

   (4)毛草球不能向左走,龙龟不能向右走。

   现在,你要安排毛草球和龙龟的各自行动顺序,让他们都能到达对岸。请给出最少的行动步骤数。


 

【答案】:归纳法

用数字给两边编号,●代表空位置

 

①n=1时:

 

   




(1)交换的步骤说明:可分成初始步骤1→2由一向右一步;关键步骤2→3交换二与一;恢复步骤3→4由一向右一步。

(2)步骤1→2形成交错现象(完全交换的要素)

 

②n=2时:

 




 

 

 

(1)由1到3所做的是为了交换二与三,3到4出现两边青蛙交替的排列;接下的4到则6是交换一与三、二与四;6到9则是为了交换一与四与开始1到4是相反的走法。完成交换。

(2)交换的步骤说明:可分成初始步骤1→2→3交换了二与三;关键步骤4→5→6;恢复步骤7→8→9

(3)步骤3→4形成交错现象(完全交换的要素);步骤6→7进入恢复步骤。

 

③n=3时:

 




 

 

(1)1到3是为了交换三与四;4到6交换五与三、四与二;6到7形成左右青蛙交替的局面,接下来的7到10则是交换一与四、二与五、三与六;10到13交换二与六、一与五;13到15交换一与六,完成交换。

(2)交换的步骤说明:可分成初始步骤1→2→3→4→5→6;关键步骤7→8→9→10;恢复步骤11→12→13→14→15→16

(3)步骤6→7形成交错现象(完全交换的要素);步骤10→11进入恢复步骤。

 

归纳如下:


可得到:若两边各有n个物体,且中间有一个空的平台,则移动总步数为   

 

【进阶】:如果想详细分析此类问题,提供一个资料可参考,点击下载


5、疯狗/帽子问题(2012年360助理产品经理笔试题、2011年网易游戏产品策划/虚拟世界设计师笔试题)


【题目】:

   村子中有50个人,每人有一条狗。在这50条狗中有疯狗(这种病不会传染)。于是人们就要找出疯狗。每个人可以观察其他的49条狗,以判断它们是否是疯狗,但是无法看出自己的狗是否有问题。观察后得到的结果不得交流,也不能通知疯狗的主人。主人一旦推算出自己家的是疯狗就要枪毙自己的狗,而且每个人只有权利枪毙自己的狗,没有权利打死其他人的狗。

   只有晚上才能看出是否是疯狗,并且发现是疯狗后只能在清晨太阳升起的瞬间枪杀疯狗

   第一天,第二天都没有枪响。到了第三天传来一阵枪声,问有几条疯狗,如何推算得出?(黎明太阳升起之前算作一天)


【答案】:递推归纳法 (第N个人总是把自己当做N-1时的旁观者,直到之后一天才幡然醒悟)  

    ① 如果只有一只疯狗,那么当晚疯狗主人就能知道自己的狗是疯狗,第一天最后黎明时刻就会枪毙自己的疯狗

   ②如果有两只疯狗,那么第一天在互相知道对方的狗后,等待对方在第一天黎明结束前枪毙自家的疯狗,等到第二天两人会明白自己的狗也是疯狗,所以第二天黎明就会枪毙自己的疯狗

   ③同理,如果有三只疯狗,那么第一天疯狗的主人会发现另外2只疯狗,这样问题就进入了步骤②的情形,狗主人会作为旁观者等待另外两个狗主人在第二天黎明枪杀疯狗,三个人进入互相等待中(都把自己当成情形②中的旁观者),这样第二天不会有枪声。于是,第三天这三个狗主人会明白自家是疯狗,所以第三天黎明会有枪声。

   ④同理,若果有四只疯狗,每个疯狗主人会把自己作为③中的旁观者,知道第三天无枪声才会觉悟自家是疯狗

   所以,N只狗,第N天黎明会有枪声


【进阶】:(2011年网易游戏产品策划/虚拟世界设计师 校园招聘笔试题)

心急如焚的贝拉赶去沃特拉城解救爱德华,却被为数众多的僧侣阻拦在城外,“不要急着去送死!”红衣主教说。原来,沃特拉城中的古代吸血鬼灵魂的封印已经被打开了。整个沃特拉城中的僧侣几乎都撤了出来,现在只剩下40名僧侣还在城内。而吸血鬼灵魂已经占据了其中至少一名僧侣的身体,他们不会主动出手,只有到晚上僧侣沉沉睡去的时候,吸血鬼才会控制身体出去咬人吸血,并使被咬的人进入吸血鬼潜伏期,潜伏期为3天(例如某人在第2天晚上被咬,第5天早上才会被发现是吸血鬼,但此人在第4晚不会去咬其他人,同时每只吸血鬼每天晚上只会咬一个人)

      僧侣们知道他们之中至少有一个吸血鬼;

      每个僧侣均可以看出别人是不是吸血鬼,但不能以任何手段干涉别人;

      僧侣们无法直接看出自己是不是吸血鬼;

      通过分析确定自己是吸血鬼后,僧侣会在傍晚太阳下山的瞬间用银子弹杀死自己;

      逾期之后即便醒悟到自己是吸血鬼,也不会自杀,因为灵魂无法得到救赎。

      其它人都无法识别吸血鬼,出于对人类的安全负责,主教封锁了整座城市,贝拉必须等所有吸血鬼和吸血鬼潜伏者全部被消灭了之后才能进城。

等到第4个傍晚时,城内传出了一些枪声。如果只有白天才能进城,那么贝拉什么时候才能进入沃特拉城?而城里还剩下多少个僧侣?(写出你的推理过程)

 

6、三个宝盒的概率问题(2012年360产品助理笔试题)

【题目】:有三个盒子,只有 一个里面装有金币。你随机抽取一个;然后有人告诉你,剩下的两个盒子中,他随机的打开了一个,发现里面是空的;然后他问你,要不要把你的盒子和另一个未打开的盒子交换?

【答案】:换

假设是ABC三个盒子,你选择了A,现在打开B无宝物,是否和C换

①选择A中奖概率1/3

②打开B无奖,AC得奖率之和为1

③C中奖率2/3

【进阶】:实际上,这个问题少了很多限定条件以至于导致了很多争议,如果有兴趣可以点击这里:车与羊的选择

 

7、分金条问题


【题目】:你让工人为你工作 7 天,给工人的回报是一根金条。金条平分成相连的 7 段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费? 


【答案】:

解题思路:

本题实质问题是数字表示问题。由 1、2 两个数字可表示 1 2 3 三个数字。由 1、2、4 三个数字可表示 17 七个数字 (即1,2,1+2,4,4+1,4+2,4+2+1)。由 1、2、4、8 四个数字可表示 115十五个数字。依此类推。

参考答案:

把金条分成 1/7、2/7 和 4/7 三份。这样,

第 1天我就可以给他 1/7;

第2 天我给他 2/7,让他找回我 1/7;

第3 天我就再给他 1/7,加上原先的2/7 就是 3/7;

第4 天我给他那块 4/7,让他找回那两块 1/7和 2/7 的金条;

第5 天,再给他 1/7;

第6 天和第 2 天一样;

第7 天给他找回的那个 1/7。


【进阶】:

1、你让工人为你工作 15 天,给工人的回报是一根金条。金条平分成相连的 15 段,你必须在每天结束时给他们一段金条,如果只许你三次把金条弄断,你如何给你的工人付费?

(1/15,2/15,4/15,8/15)

2、你让工人为你工作 31 天,给工人的回报是一根金条。金条平分成相连的 31 段,你必须在每天结束时给他们一段金条,如果只许你四次把金条弄断,你如何给你的工人付费?

(1/31,2/31,4/31,8/31,16/31)

3、你让工人为你工作 (2^n)-1 天,给工人的回报是一根金条。金条平分成相连的 (2^n)-1 段,你必须在每天结束时给他们一段金条,如果只许你n1 次把金条弄断,你如何给你的工人付费?

(1/ ((2^n)-1),2/ ((2^n)-1),4/ ((2^n)-1),...)

4.人民币为什么只有 1、2、5、10 的面值?

(便于找零钱。理想状态下应是 1、2、4、8,在现实生活中常用 10进制,故将4、8 变为 5、10。只要2 有两个,1、2、2、5、10五个数字可表示 120。)



8、猴子搬香蕉问题


【题目】:

   一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。(提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。)


【答案】:本题关键点在于:猴子搬箱子的过程其实分为两个阶段,第一阶段:来回搬,当香蕉数目大于50根时,猴子每搬一米需要吃掉三根香蕉。第二阶段:香蕉数《=50,直接搬回去。每走一米吃掉1根。

我们分析第一阶段:假如把100根香蕉分为两箱。一箱50根。

第一步,把A箱搬一米,吃一根。

第二步,往回走一米,吃一根。

第三步,把B箱搬一米,吃一根。

这样,把所有香蕉搬走一米需要吃掉三根香蕉。

这样走到第几米的时候,香蕉数刚好小于50呢?

100-(n*3)<50 && 100-(n-1*3)>50

走到16米的时候,吃掉48根香蕉,剩52根香蕉。这步很有意思,它可以直接搬50往前走,也可以再来回搬一次,但结果都是一样的。到17米的时候,猴子还有49根香蕉。这时猴子就轻松啦。直接背着走就行。

第二阶段:

走一米吃一根。

把剩下的50-17=33米走完。还剩49-33=16根香蕉。

 

9、飞机加油问题

【题目】:每个飞机只有一个油箱,飞机之间可以相互加油(注意是相互,没有加油机)一箱油可供一架飞机绕地球飞半圈。

   为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)


【答案】:

       至少需要出动5 架飞机。思路是这样的,一架飞机要想完成绕地球一周的飞行,至少需要别的飞机给它提供1 箱油。最划算的办法显然是,派飞机和它结伴飞行前四分之一周以及后四分之一周,(因为这两段路程距离基地近所花代价小。)

       由它独立飞行中间的半程。必须保证两个加油点,前四分之一处,加满,后四分之一点,及时补充。那么必须有两架飞机与目标机结伴飞行四分之一周,这两架飞机需要做折返飞行,正好花费2 箱油。所以补充油的任务实际上该由另外两架飞机完成。这两架飞机飞八分之一周,做折返飞,正好富余1 箱油。因此,5 架飞机刚好完成任务。到了此时,问题只考虑了一半。能够提供多少油并不意味着就能够全部接受,受到结伴飞行的距离,即腾出的油箱空间所限制。而以下做法正好可以满足此条件。

       3 架飞机同时从机场出发,飞行八分之一周,各耗油四分之一。此时某架飞机给其余两架补满油,自己返回基地。另一机和目标机结伴,飞至四分之一周,给目标机补满油,自己返回。目标机独自飞行半周,与从基地反向出发的一机相遇,2 机将油平分,飞至最后八分之一处,与从基地反向出发的另一机相遇,各分四分之一油,返回

 

【进阶】:这是比较投机的解法,如果你关心如果证明其逻辑性,可以参考这里

 

10、博弈类取物游戏

【题目】:16个硬币,A和B轮流拿走一些,每次拿走的个数只能是1,2,4中的一个数。
谁最后拿硬币谁输。
问:A或B有无策略保证自己赢?

 

【答案】:

博弈类问题,分清两概念

①必胜态:有一种方法导致下一状态为必败态

②必败态:每一种方法导致下一状态为必胜态

③解决办法:递推

 

此题归纳如下:自己的选择使自己进入必胜态或者将对手逼入必败态

剩余1个:必败

剩余2个必胜:取1,导致变为1状态(必败)

剩余3个必胜:取2->必败态

剩余4个必败:取1或2或4均导致必败态或直接失败

以些类推知16为必败态,即后手必胜

 

剩2个时,取1个必胜;
剩3个时,取2个必胜;
剩4个时,如果对手足够聪明则必败;
剩5个时,取1个必胜(取1个对手进入4必败态)
记作 2(1) 3(2) 4(x) 5(1) 6(2) 7(x) 8(1) ...
从中找出规律:
当剩余个数K=3N-2,N为自然数时,只要对手足够聪明则必败.
当K=3N-1时,有必胜策略: 取1个;
当K=3N时,有必胜策略:取2个;
所以,当16个时,后取者有必胜策略

 

【进阶】:

       一堆球,共100个。两个人轮流拿,拿到最后一个赢。最少拿1个,最多拿5个。如果你先拿,第一次拿多少保证能赢?

       答案:这是巴什博弈(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,如果n=m+1,那么由于一次最多只能取 m 个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n= ( m+1) r+s ,( r 为任意自然数, s≤m), 那么先取者要拿走 s 个物品,如果后取者拿走 k ( ≤m) 个,那么先取者再拿走 m+1-k 个,结果剩下( m+1 )( r-1 )个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1 )的倍数,就能最后获胜。即当n%(m+1)<>0时,先取必胜,第一次先拿走n%(m+1),以后每个回合到保持两人拿走的物品总和为m+1即可。

点击这里有更详尽的博弈相关总结。

 

11、倒水/倒酒问题

【题目】:假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为 
5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。

【答案】:形式化倒水问题:无穷多水,容量a,b(a<=b)的水壶倒出c(c<=b)升水

形式化倒水问题:无穷多水,容量a,b(a<=b)的水壶倒出c(c<=b)升水。

       这是一个趣味数学问题,人们常常通过反复试验(在纸上进行),拼凑出问题的答案.其实,在解决问题的过程中,我们所做的动作只有“取水”和“倒水”两种,若把倒水量看作取水量的相反意义的量,问题的解的形式一定是:

即存在整数x,y,使得ax+by=c

下面只须求出这个二元一次方程的整数解.将上述方程变形得:y=(c-ax)/b依次取a=0,土1,士2,士3,…,进行试验,可得到原方程的一系列整数解

 

12、黑白帽子问题

【题目】:有一个牢房,有3个犯人关在其中。因为玻璃很厚,所以3个人只能互相看见,不能听到对方说话的声音。”
   有一天,国王想了一个办法,给他们每个人头上都戴了一顶帽子,只叫他们知道帽子的颜色不是白的就是黑的,不叫他们知道自己所戴帽子的是什么颜色的。在这种情况下,国王宣布两条如下:
    1.谁能看到其他两个犯人戴的都是白帽子,就可以释放谁;
    2.谁知道自己戴的是黑帽子,就释放谁。
   其实,国王给他们戴的都是黑帽子。他们因为被绑,看不见自己罢了。于是他们3个人互相盯着不说话。可是不久,心眼灵的A用推理的方法,认定自己戴的是黑帽子。您想,他是怎样推断的?

【答案】:

假设思维 

现在假设3个犯人是A、B和我
那么我的推断是:
第一种:我戴的是白帽子
那么A会这么想:如果自己戴的是白帽子,那么B就会看到2个白帽子,那么他根据国王的第一条就马上会被释放,但是B现在没有被释放,说明我戴的不是白的,是黑的,哈哈,我知道自己是黑的拉,我可以要求国王释放我拉
结论:如果我戴的是白帽子,那么根据A犯人的想法得出:A和B必然有一个会被释放,但是现在2个人都没有被释放,所以我一定不是白的,而是黑的,所以我会知道自己是黑的,要求国王释放我,这样,我就被放了
同理,A和B根据别人的想法也都算出自己是黑帽子,这样3个犯人同时被释放

 

13、汽水瓶/等比数列求和问题

【题目】:1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20 元钱,最多可以喝到几瓶汽水?

【答案】:

解题思路 1:

       一开始 20 瓶没有问题,随后的 10瓶和 5 瓶也都没有问题,接着把5 瓶分成 4 瓶和 1瓶,前 4个空瓶再换 2 瓶,喝完后 2 瓶再换 1瓶,此时喝完后手头上剩余的空瓶数为 2 个,把这 2 个瓶换 1 瓶继续喝,喝完后把这 1 个空瓶换 1 瓶汽水,喝完换来的那瓶再把瓶子还给人家即可,所以最多可以喝的汽水数为:20+10+5+2+1+1+1=40

解题思路 2:

       先看 1元钱最多能喝几瓶汽水。喝 1瓶余 1个空瓶,借商家 1个空瓶,2 个瓶换 1瓶继续喝,喝完后把这 1个空瓶还给商家。即 1元钱最多能喝 2 瓶汽水。20 元钱当然最多能喝40 瓶汽水。

解题思路 3:

       两个空瓶换一瓶汽水,可知纯汽水只值5 角钱。20 元钱当然最多能喝 40 瓶的纯汽水。N 元钱当然最多能喝2N 瓶汽水。

参考答案:40 瓶

 

【进阶】:

其实这种题最简单的思想就是等比数列求极限的问题。和=a1(1-q^n)/(1-q)

题目中q=1/2,a1=20,n趋于无限时,和为40

 

=============================================

还有些比较简单的类型,一并在这里举例,基本是中学数学可以解决的问题,所以不再展开

=========================================

14、过桥问题

 

题一、小明一家过一座桥,过桥时是黑夜,所以必须有灯。现在小明过桥要 1秒,小明的弟弟要 3 秒,小明的爸爸要 6 秒,小明的妈妈要 8 秒,小明的爷爷要 12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30 秒就会熄灭。问:小明一家如何过桥?

答案:第一步:小明跟他弟弟一起过桥,然后小明自己回来花掉了 3+1=4 秒;

第二步:小明的妈妈跟爷爷一起过桥,然后小明弟弟回来花掉了 12+3=15秒;

第三步:小明跟他爸爸一起过桥,然后小明自己回来花掉了 6+1=7 秒;

第四步:小明跟他弟弟一起过桥花掉了 3 秒

总共花掉4+15+7+3=29 秒


题二、U2 合唱团在 17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥 的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把 手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。 Bono 需花 1 分钟过桥,Edge 需花 2 分钟过桥,Adam需花 5 分钟过桥,Larry 需花 10分钟过桥。
答案:分析:有个康奈尔的学生写文章说他当时在微软面试时就是碰到了这道题。要在17分钟过桥的问题,跟上题类似,但更简单

第一步:Bono+Edge 跟一起过桥,然后Bono 回来花掉了 2+1=3 秒;

第二步:Adam+Larry 一起过桥,然后 Edge 回来花掉了 10+2=12秒;

第三步:还是Bono+Edge 一起过桥花掉了 2 秒;

一共花掉 3+12+2=17 秒  

 

15、年龄问题

       一普查员问一女人,“你有多少个孩子,他们多少岁?”女人回答:“我有三个孩子,他们的岁数相乘是36,岁数相加就等于隔离间屋的门牌号码.”普查员立刻走到隔邻,看了一看,回来说:”我还需要多少数据.”女人回答:“我现在很忙,我最大的孩子正在楼上睡觉.”普查员说:”谢谢,我己知道了
       问题:那三个孩子的岁数是多少。

 

分析,设三个人的年龄组成自然数组合(x,y,z),一共三个条件,
条件一:三个人岁数乘起来为36;选出满足x*y*z=36的组合;
条件二:知道三个人岁数之和后还是不能确定它们的年龄;从上面的到的组合中找出xyz之和有相同的组合;
只有 (9,2,2)=13,(6,6,1)=13
条件三:三个孩子中有一个年龄比其他两个大。符合条件的组合只有(9,2,2)



16、移动数字类型(2012年9月搜狐产品类笔试题)

【题目】

       63=62-1,移动一个数字使式子成立(注意不是符号)

【答案】

       嗯,还是2进制,计算机的孩纸都懂的,2^6=64,  63=2^6-1

 

17、几道有意思的智力面试题(注:以下来源于网络)

1、考虑一个双人游戏。游戏在一个圆桌上进行。每个游戏者都有足够多的硬币。他们需要在桌子上轮流放置硬币,每次必需且只能放置一枚硬币,要求硬币完全置于桌面内(不能有一部分悬在桌子外面),并且不能与原来放过的硬币重叠。谁没有地方放置新的硬币,谁就输了。游戏的先行者还是后行者有必胜策略?这种策略是什么?
答案:先行者在桌子中心放置一枚硬币,以后的硬币总是放在与后行者刚才放的地方相对称的位置。这样,只要后行者能放,先行者一定也有地方放。先行者必胜。

 

2、一个矩形蛋糕,蛋糕内部有一块矩形的空洞。只用一刀,如何将蛋糕切成大小相等的两块?
 答案:注意到平分矩形面积的线都经过矩形的中心。过大矩形和空心矩形各自的中心画一条线,这条线显然把两个矩形都分成了一半,它们的差当然也是相等的。

 

3、 一块矩形的巧克力,初始时由N x M个小块组成。每一次你只能把一块巧克力掰成两个小矩形。最少需要几次才能把它们掰成N x M块1x1的小巧克力?
 答案:N x M - 1次显然足够了。这个数目也是必需的,因为每掰一次后当前巧克力的块数只能增加一,把巧克力分成N x M块当然需要至少掰N x M - 1次。

 

4、地球上有多少个点,使得从该点出发向南走一英里,向东走一英里,再向北走一英里之后恰好回到了起点?
 答案:“北极点”是一个传统的答案,其实这个问题还有其它的答案。事实上,满足要求的点有无穷多个。所有距离南极点1 + 1/(2π)英里的地方都是满足要求的,向南走一英里后到达距离南极点1/(2π)的地方,向东走一英里后正好绕行纬度圈一周,再向北走原路返回到起点。事实上,这仍然不是满足要求的全部点。距离南极点1 + 1/(2kπ)的地方都是可以的,其中k可以是任意一个正整数。

 

5、A、B两人分别在两座岛上。B生病了,A有B所需要的药。C有一艘小船和一个可以上锁的箱子。C愿意在A和B之间运东西,但东西只能放在箱子里。只要箱子没被上锁,C都会偷走箱子里的东西,不管箱子里有什么。如果A和B各自有一把锁和只能开自己那把锁的钥匙,A应该如何把东西安全递交给B?
答案:A把药放进箱子,用自己的锁把箱子锁上。B拿到箱子后,再在箱子上加一把自己的锁。箱子运回A后,A取下自己的锁。箱子再运到B手中时,B取下自己的锁,获得药物。

 

6、一对夫妇邀请N-1对夫妇参加聚会(因此聚会上总共有2N人)。每个人都和所有自己不认识的人握了一次手。然后,男主人问其余所有人(共2N-1个人)各自都握了几次手,得到的答案全部都不一样。假设每个人都认识自己的配偶,那么女主人握了几次手?
答案:握手次数只可能是从0到2N-2这2N-1个数。除去男主人外,一共有2N-1个人,因此每个数恰好出现了一次。其中有一个人(0)没有握手,有一个人(2N-2)和所有其它的夫妇都握了手。这两个人肯定是一对夫妻,否则后者将和前者握手(从而前者的握手次数不再是0)。除去这对夫妻外,有一个人(1)只与(2N-2)握过手,有一个人(2N-3)和除了(0)以外的其它夫妇都握了手。这两个人肯定是一对夫妻,否则后者将和前者握手(从而前者的握手次数不再是1)。以此类推,直到握过N-2次手的人和握过N次手的人配成一对。此时,除了男主人及其配偶以外,其余所有人都已经配对。根据排除法,最后剩下来的那个握手次数为N-1的人就是女主人了。

 

7、 如果叫你从下面两种游戏中选择一种,你选择哪一种?为什么?
a. 写下一句话。如果这句话为真,你将获得10美元;如果这句话为假,你获得的金钱将少于10美元或多于10美元(但不能恰好为10美元)。
b. 写下一句话。不管这句话的真假,你都会得到多于10美元的钱。
 答案:选择第一种游戏,并写下“我既不会得到10美元,也不会得到10000000美元”。


8、你在一幢100层大楼下,有21根电线线头标有数字1..21。这些电线一直延伸到大楼楼顶,楼顶的线头处标有字母A..U。你不知道下面的数字和上面的字母的对应关系。你有一个电池,一个灯泡,和许多很短的电线。如何只上下楼一次就能确定电线线头的对应关系?
答案:在下面把2,3连在一起,把4到6全连在一起,把7到10全连在一起,等等,这样你就把电线分成了6个“等价类”,大小分别为1, 2, 3, 4, 5, 6。然后到楼顶,测出哪根线和其它所有电线都不相连,哪些线和另外一根相连,哪些线和另外两根相连,等等,从而确定出字母A..U各属于哪个等价类。现在,把每个等价类中的第一个字母连在一起,形成一个大小为6的新等价类;再把后5个等价类中的第二个字母连在一起,形成一个大小为5的新等价类;以此类推。回到楼下,把新的等价类区别出来。这样,你就知道了每个数字对应了哪一个原等价类的第几个字母,从而解决问题。

 

9、某种药方要求非常严格,你每天需要同时服用A、B两种药片各一颗,不能多也不能少。这种药非常贵,你不希望有任何一点的浪费。一天,你打开装药片A的药瓶,倒出一粒药片放在手心;然后打开另一个药瓶,但不小心倒出了两粒药片。现在,你手心上有一颗药片A,两颗药片B,并且你无法区别哪个是A,哪个是B。你如何才能严格遵循药方服用药片,并且不能有任何的浪费?
答案:把手上的三片药各自切成两半,分成两堆摆放。再取出一粒药片A,也把它切成两半,然后在每一堆里加上半片的A。现在,每一堆药片恰好包含两个半片的A和两个半片的B。一天服用其中一堆即可。

 

10、你在一个飞船上,飞船上的计算机有n个处理器。突然,飞船受到外星激光武器的攻击,一些处理器被损坏了。你知道有超过一半的处理器仍然是好的。你可以向一个处理器询问另一个处理器是好的还是坏的。一个好的处理器总是说真话,一个坏的处理器总是说假话。用n-2次询问找出一个好的处理器。
答案:给处理器从1到n标号。用符号a->b表示向标号为a的处理器询问处理器b是不是好的。首先问1->2,如果1说不是,就把他们俩都去掉(去掉了一个好的和一个坏的,则剩下的处理器中好的仍然过半),然后从3->4开始继续发问。如果1说2是好的,就继续问2->3,3->4,……直到某一次j说j+1是坏的,把j和j+1去掉,然后问j-1 -> j+2;或者从j+2 -> j+3开始发问,如果前面已经没有j-1了(之前已经被去掉过了)。注意到你始终维护着这样一个“链”,前面的每一个处理器都说后面那个是好的。这条链里的所有处理器要么都是好的,要么都是坏的。当这条链越来越长,剩下的处理器越来越少时,总有一个时候这条链超过了剩下的处理器的一半,此时可以肯定这条链里的所有处理器都是好的。或者,越来越多的处理器都被去掉了,链的长度依旧为0,而最后只剩下一个或两个处理器没被问过,那他们一定就是好的了。另外注意到,第一个处理器的好坏从来没被问过,仔细想想你会发现最后一个处理器的好坏也不可能被问到(一旦链长超过剩余处理器的一半,或者最后没被去掉的就只剩这一个了时,你就不问了),因此询问次数不会超过n-2。

 

11、一个圆盘被涂上了黑白二色,两种颜色各占一个半圆。圆盘以一个未知的速度、按一个未知的方向旋转。你有一种特殊的相机可以让你即时观察到圆上的一个点的颜色。你需要多少个相机才能确定圆盘旋转的方向?
答案:你可以把两个相机放在圆盘上相近的两点,然后观察哪个点先变色。事实上,只需要一个相机就够了。控制相机绕圆盘中心顺时针移动,观察颜色多久变一次;然后让相机以相同的速度逆时针绕着圆盘中心移动,再次观察变色的频率。可以断定,变色频率较慢的那一次,相机的转动方向是和圆盘相同的。

 

12、有25匹马,速度都不同,但每匹马的速度都是定值。现在只有5条赛道,无法计时,即每赛一场最多只能知道5匹马的相对快慢。问最少赛几场可以找出25匹马中速度最快的前3名?

每匹马都至少要有一次参赛的机会,所以25匹马分成5组,一开始的这5场比赛是免不了的。接下来要找冠军也很容易,每一组的冠军在一起赛一场就行了(第6场)。最后就是要找第2和第3名。我们按照第6场比赛中得到的名次依次把它们在前5场比赛中所在的组命名为A、B、C、D、E。即:A组的冠军是第6场的第1名,B组的冠军是第6场的第2名……每一组的5匹马按照他们已经赛出的成绩从快到慢编号:

 

A组:1,23,4,5
B组:12,3,4,5
C组:1,2,3,4,5
D组:1,2,3,4,5
E组:1,2,3,4,5

从现在所得到的信息,我们可以知道哪些马已经被排除在3名以外。只要已经能确定有3匹或3匹以上的马比这匹马快,那么它就已经被淘汰了。可以看到,只有上表中粗体的那5匹马是有可能为2、3名的。即:A组的2、3名;B组的1、2名,C组的第1名。取这5匹马进行第7场比赛,第7场比赛的前两名就是25匹马中的2、3名。故一共最少要赛7场。

这道题有一些变体,比如64匹马找前4名。方法是一样的,在得出第1名以后寻找后3名的候选竞争者就可以了。


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值