变化图形就是变化图形的几何关系,即改变顶点的坐标,同时保持图形的原拓扑关系不变(即用结点、弧段和多边形所表示的实体之间的邻接、关联、包含和连通关系不变。如:点与点的邻接关系、点与面的包含关系、线与面的相离关系、面与面的重合关系等)
计算机中的二维图形变换满足仿射变换
仿射变换(Affine Transformation)
1. “平直性”:直线经过变化之后依旧是直线
2. “平行性”:平行线依旧是平行线,即直线上点的位置不变
x1 = ax+by+m
y1 = cx+dy+n
称为二维仿射变换,其中坐标(x1, y1)都是原始坐标x和y的线性函数
齐次坐标
用三维向量表示二维向量,或者一般而言,用一个n+1维向量表示一个n维向量的方法称为齐次坐标表示法。齐次坐标方便图形变换操作,比如二维图形没有齐次坐标矩阵就无法平移变换

基本几何变换
- 平移变换 :x平移Tx y平移Ty
100010TxTy1 \begin{gathered} \begin{matrix} 1& 0& 0 \\ 0 & 1 & 0 \\ Tx& Ty & 1 \end{matrix} \quad \end{gathered} 10Tx01Ty00

本文探讨了二维图形变换中保持拓扑关系不变的重要概念——仿射变换,介绍了仿射变换的矩阵表示,并详细讲解了齐次坐标在图形变换中的作用,特别是如何通过齐次坐标实现平移、比例、对称、旋转和错切等基本几何变换。
最低0.47元/天 解锁文章
1631

被折叠的 条评论
为什么被折叠?



