[BZOJ4199][NOI2015]品酒大会(后缀数组+单调栈+ST表)

原创 2017年04月04日 08:51:20

=== ===

这里放传送门

=== ===

题解

这题好多网上的标算写的都是并查集。。然而ATP当时做的时候一看这不就是求LCP吗求LCP不光用单调栈吗然后就开始想单调栈最后还真想出来了一个科学的做法。。不过就是有点儿慢。。。
首先如果我们可以求出所有LCP恰好是i的后缀的答案,那么我们就可以用ans[i]来更新ans[i1]
在做单调栈的时候每次加入一个后缀suf(i)以后单调栈里是可以维护出它跟前面所有后缀的LCP的,并且这个东西在单调栈里是一段一段的,每一段里面的后缀跟suf(i)的LCP都相同。
考虑暴力一点的做法,我们可以在每次加入一个后缀以后都扫描整个单调栈,设这一段跟suf(i)的LCP长度为h,那么我们应该把这一段的长度累加到ans[h]上。同时我们记录区间内的最大最小值,用这个值来和suf(i)的权值相乘然后更新Max[h]

那么如何优化呢?可以发现比较靠近栈底的那些“段”是会保留在栈内很长时间的,也就是它会被累加好几次。那么只要知道它待在栈内的时间新加入了多少个后缀,就能知道它会被累加多少遍。对每一段维护一个入栈出栈时间戳就可以了。对于第二问要维护每一段内的最大最小值,然后因为它待在栈里的时间内加入的后缀是一段连续的区间,所以可以用ST表查出这一段后缀的最大最小值用来更新答案。
这样做的话时间复杂度和空间复杂度都是O(nlogn)的。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#define Pow 19
using namespace std;
const long long inf=2e18;
int n,len,a[300010],top,st[300010],cnt[300010],m,p,b[300010],SA[300010],rank[300010],L[300010],now;
int height[300010],*x,*y,Xx[300010],Yy[300010];
char s[300010];
long long f[300010],Maxp[300010],Minn[300010],Max[300010];
namespace STtable{
    int Max[300010][22],Min[300010][22],lg[300010];
    void build(){
        for (int i=1,p=0;i<=n;i++){
            while ((1<<p)<=i) ++p;
            lg[i]=p-1;
        }
        for (int i=0;i<n;i++)
          Min[i][0]=Max[i][0]=a[SA[i]];
        for (int i=1;i<=Pow;i++)
          for (int j=0;j<n;j++){
              int pos=j+(1<<(i-1));
              if (pos>=n) break;
              Min[j][i]=min(Min[j][i-1],Min[pos][i-1]);
              Max[j][i]=max(Max[j][i-1],Max[pos][i-1]);
          }
    }
    long long getMax(int l,int r){
        int j=lg[r-l+1];
        return max(Max[l][j],Max[r-(1<<j)+1][j]);
    }
    long long getMin(int l,int r){
        int j=lg[r-l+1];
        return min(Min[l][j],Min[r-(1<<j)+1][j]);
    }
}
bool cmp(int i,int j,int l){
    return y[i]==y[j]&&((i+l>=len)?-1:y[i+l])==((j+l>=len)?-1:y[j+l]);
}
void get_SA(){
    m=200;x=Xx;y=Yy;
    for (int i=0;i<len;i++) ++b[x[i]=s[i]];
    for (int i=1;i<=m;i++) b[i]+=b[i-1];
    for (int i=len-1;i>=0;i--) SA[--b[x[i]]]=i;
    for (int k=1;k<=len;k<<=1){
        p=0;
        for (int i=len-k;i<len;i++) y[p++]=i;
        for (int i=0;i<len;i++)
          if (SA[i]>=k) y[p++]=SA[i]-k;
        for (int i=0;i<=m;i++) b[i]=0;
        for (int i=0;i<len;i++) ++b[x[y[i]]];
        for (int i=1;i<=m;i++) b[i]+=b[i-1];
        for (int i=len-1;i>=0;i--) SA[--b[x[y[i]]]]=y[i];
        swap(x,y);p=1;x[SA[0]]=0;
        for (int i=1;i<len;i++)
          x[SA[i]]=cmp(SA[i-1],SA[i],k)?p-1:p++;
        if (p>len) break;m=p;
    }
    p=0;
    for (int i=0;i<len;i++) rank[SA[i]]=i;
    for (int i=0;i<len;i++){
        if (rank[i]==0) continue;
        int j=SA[rank[i]-1];
        while (i+p<len&&j+p<len&&s[i+p]==s[j+p]) ++p;
        height[rank[i]]=p;
        if (p!=0) p--;
    }
}
void Add(int i,long long val){
    Minn[i]=min(Minn[i],val);
    Maxp[i]=max(Maxp[i],val);
}
void calc(int i){
    int len=i-L[i],c=now-cnt[i];
    long long Maxnow,Minnow;
    f[height[i]]+=(long long)len*c;
    Maxnow=STtable::getMax(cnt[i]+1,now);
    Minnow=STtable::getMin(cnt[i]+1,now);
    Max[height[i]]=max(Max[height[i]],Maxnow*Maxp[i]);
    Max[height[i]]=max(Max[height[i]],Minnow*Minn[i]);
}
int main()
{
    scanf("%d",&n);
    for (int i=0;i<n;i++){
        char c=getchar();
        while (c<'a'||c>'z') c=getchar();
        s[i]=c;
    }
    for (int i=0;i<n;i++) scanf("%d",&a[i]);
    len=n;get_SA();
    STtable::build();
    for (int i=0;i<=n;i++) Max[i]=Maxp[i]=-inf;
    for (int i=0;i<=n;i++) Minn[i]=inf;
    for (int i=1;i<len;i++){
        L[i]=i-1;
        Add(i,a[SA[i-1]]);
        while (top!=0&&height[st[top]]>=height[i]){
            calc(st[top]);L[i]=L[st[top]];
            Add(i,Maxp[st[top]]);
            Add(i,Minn[st[top]]);
            --top;
        }
        st[++top]=i;cnt[i]=now;++now;
    }
    while (top!=0){calc(st[top]);--top;}
    for (int i=len-1;i>=0;i--){
        Max[i]=max(Max[i],Max[i+1]);
        f[i]=f[i]+f[i+1];
    }
    for (int i=0;i<len;i++)
      if (Max[i]==-inf) Max[i]=0;
    for (int i=0;i<len;i++)
      printf("%I64d %I64d\n",f[i],Max[i]);
    return 0;
}

偏偏在最后出现的补充说明

理解后缀数组的常用套路

版权声明:本文为博主口胡,请谨慎转载 https://blog.csdn.net/FromATP/article/details/69055320

【BZOJ4199】品酒大会,后缀数组+并查集维护

烦死了
  • xym_CSDN
  • xym_CSDN
  • 2016-05-23 22:11:31
  • 343

BZOJ_P4199 [NOI2015] 品酒大会(后缀数组+并查集)

BZOJ传送门一年一度的“幻影阁夏日品酒大会”隆重开幕了。大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加。在大会的晚餐上,调酒师 Rainb...
  • qq_18455665
  • qq_18455665
  • 2016-03-31 19:08:37
  • 356

[bzoj4199][NOI2015]品酒大会

4199: [Noi2015]品酒大会Time Limit: 10 Sec Memory Limit: 512 MB Submit: 418 Solved: 231 [Submit][Stat...
  • FZHvampire
  • FZHvampire
  • 2016-04-18 17:47:48
  • 691

BZOJ4199 NOI2015 品酒大会 题解&代码

并查集维护…着急回宿舍(浪)明天再写详细题解/************************************************************** Problem: 4...
  • Rainbow6174
  • Rainbow6174
  • 2016-03-09 22:07:24
  • 802

【bzoj4199】[Noi2015]品酒大会 后缀自动机

听说对反串建SAM,fa树就是后缀树? 听说两个后缀的LCP就是LCA的mx? 然后就是个树上dp? 靠,老子边界打错了 #include #include #include #inc...
  • u012288458
  • u012288458
  • 2016-06-30 20:44:59
  • 705

bzoj4199 [Noi2015]品酒大会(后缀数组+ 并查集 || st表 )

bzoj4199 [Noi2015]品酒大会 原题地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4199 题意: (Rinbow和Fred...
  • Bfk_zr
  • Bfk_zr
  • 2018-01-17 12:21:05
  • 87

[BZOJ4199] [Noi2015]品酒大会

传送门http://www.lydsy.com/JudgeOnline/problem.php?id=4199题目大意给定以i开始的所有子串权值为ai给定以i开始的所有子串权值为a_i 询问所有子串...
  • slongle_amazing
  • slongle_amazing
  • 2016-03-01 10:31:43
  • 536

【NOI2015】bzoj4199 品酒大会【解法一】

后缀树+树形dp
  • sdfzyhx
  • sdfzyhx
  • 2017-05-25 08:46:19
  • 156

【BZOJ4199】品酒大会(NOI2015)-后缀数组+并查集

测试地址:品酒大会 做法:本题需要用到后缀数组+并查集。 不难想到,对题目所给的字符串构造后缀数组,那么后缀数组上两个后缀之间最小的heightheightheight就是这两杯酒满足的最大相似度...
  • Maxwei_wzj
  • Maxwei_wzj
  • 2018-03-08 21:28:28
  • 21

【BZOJ】【P1307&P1318】【题解】【max_element】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1307 http://www.lydsy.com/JudgeOnline/problem.ph...
  • u012732945
  • u012732945
  • 2015-01-19 20:59:23
  • 882
收藏助手
不良信息举报
您举报文章:[BZOJ4199][NOI2015]品酒大会(后缀数组+单调栈+ST表)
举报原因:
原因补充:

(最多只允许输入30个字)