【人工智能学习笔记】 1.3高等代数(一) -17.分块矩阵

声明:部分内容来自于慕课,公开课等的课件,仅用于自学。如有问题,请联系删除。

部分内容来自北京大学,清华大学等的课件

分块矩阵的概念,分块矩阵的运算,准对角矩阵


一. 分块矩阵的概念

定义

设A是一个矩阵,在A的行或列之间加上一些线,把这个矩阵分成若干小块.用这种方法被分成若干小块的矩阵叫做一个 分块矩阵.每一个分块的方法叫做A一种 分法

特殊分法:

设矩阵A=(aij)s×n,A = (a_{ij})_{s \times n},

按行分块A=(A1A2...As),A=\begin{pmatrix}A_1\\A_2\\.\\.\\.\\A_s\end{pmatrix},其中Ai=(ai1,ai2,...,ain),i=1,2,..,sA_i=(a_{i1},a_{i2},...,a_{in}),i=1,2,..,s

按列分块A=(A1,A2,...,An)A=(A_{1},A_{2},...,A_{n})其中Aj=(a1ja2j...anj),j=1,2,..,nA_j=\begin{pmatrix}a_{1j}\\a_{2j}\\.\\.\\.\\a_{nj}\end{pmatrix},j=1,2,..,n

二. 分块矩阵的运算

2.1 加法

设 A, B 是两个m×nm \times n矩阵,对它们用同样的分法分块:

A=(A11...A1r......As1...Asr),B=(B11...B1r......Bs1...Bsr),A=\begin{pmatrix}A_{11} &...&A_{1r} \\.&&.\\.&&.\\.&&.\\A_{s1} &...&A_{sr}\end{pmatrix},B=\begin{pmatrix}B_{11} &...&B_{1r} \\.&&.\\.&&.\\.&&.\\B_{s1} &...&B_{sr}\end{pmatrix},

其中子块 AijA_{ij}BijB_{ij}为同型矩阵,则

A+B=(A11+B11...A1r+B1r......As1+Bs1...Asr+Bsr).A+B=\begin{pmatrix}A_{11}+B_{11} &...&A_{1r}+B_{1r} \\.&&.\\.&&.\\.&&.\\A_{s1}+ B_{s1} &...&A_{sr}+B_{sr}\end{pmatrix}.

2.2 数量乘法

设分块矩阵A=(A11...A1r......As1...Asr),λP,A=\begin{pmatrix}A_{11} &...&A_{1r} \\.&&.\\.&&.\\.&&.\\A_{s1} &...&A_{sr}\end{pmatrix},\lambda \in P ,λA=(λA11...λA1r......λAs1...λAsr)\lambda A=\begin{pmatrix} \lambda A_{11} &...&\lambda A_{1r} \\.&&.\\.&&.\\.&&.\\\lambda A_{s1} &...&\lambda A_{sr}\end{pmatrix}

2.3 乘法

把矩阵A=(aik)m×n,B=(bkj)n×pA = (a_{ik})_{m \times n},B = (b_{kj})_{n \times p}分块成

A=(A11...A1t......As1...Ast),B=(B11...B1r......Bt1...Btr),A=\begin{pmatrix}A_{11} &...&A_{1t} \\.&&.\\.&&.\\.&&.\\A_{s1} &...&A_{st}\end{pmatrix},B=\begin{pmatrix}B_{11} &...&B_{1r} \\.&&.\\.&&.\\.&&.\\B_{t1} &...&B_{tr}\end{pmatrix},

其中Ai1,Ai2,...,AitA_{i1},A_{i2},...,A_{it} 的列数分别等于B1j,B2j,...,BijB_{1j},B_{2j},...,B_{ij}的行数 那么

AB=(C11...C1r......Cs1...Csr)AB=\begin{pmatrix}C_{11} &...&C_{1r} \\.&&.\\.&&.\\.&&.\\C_{s1} &...&C_{sr}\end{pmatrix}

其中Cij=k=1tAikBkj(i=1,...,s;j=1,...,r).C_{ij}=\sum_{k=1}^tA_{ik}B_{kj}(i=1,...,s;j=1,...,r).

2.4 转置

设分块矩阵A=(A11A12...A1tA21A22...A2t............As1As2...Ast),A=\begin{pmatrix}A_{11}&A_{12}&...&A_{1t}\\A_{21}&A_{22}&...&A_{2t}\\...&...&...&...\\A_{s1}&A_{s2}&...&A_{st}\\\end{pmatrix},

A=(A11A21...As1A12A22...As2............A1tA2t...Ast).A'=\begin{pmatrix}A_{11}'&A_{21}'&...&A_{s1}'\\A_{12}'&A_{22}'&...&A_{s2}'\\.&.&.&.\\.&.&.&.\\.&.&.&.\\A_{1t}'&A_{2t}'&...&A_{st}'\\\end{pmatrix}.

三. 准对角矩阵

3.1 定义

形式如A=(A1A20..0.As),A=\begin{pmatrix}A_{1} && \\&A_{2} && 0\\&&.\\&&&.\\&0&&&.\\&&&&&A_{s} \end{pmatrix},

的分块矩阵,其中AiA_inin_i级方阵( i=1,2,… , s),称为准对角矩阵.

3.2 性质

(1) 设准对角矩阵 A, B 级数相同,并且分法相同,则

A=(A1A20..0.As),B=(B1B20..0.Bs),A=\begin{pmatrix}A_{1} && \\&A_{2} && 0\\&&.\\&&&.\\&0&&&.\\&&&&&A_{s} \end{pmatrix},B=\begin{pmatrix}B_{1} && \\&B_{2} && 0\\&&.\\&&&.\\&0&&&.\\&&&&&B_{s} \end{pmatrix},

A+B=(A1+B1A2+B20..0.As+Bs)A+B=\begin{pmatrix}A_{1}+B_1 && \\&A_{2}+B_2 && 0\\&&.\\&&&.\\&0&&&.\\&&&&&A_{s} +B_s\end{pmatrix}

AB=(A1B1A2B20..0.AsBs)AB=\begin{pmatrix}A_{1}B_1 && \\&A_{2}B_2 && 0\\&&.\\&&&.\\&0&&&.\\&&&&&A_{s} B_s\end{pmatrix}

(2) 准对角矩阵A=(A1A20..0.As)A=\begin{pmatrix}A_{1} && \\&A_{2} && 0\\&&.\\&&&.\\&0&&&.\\&&&&&A_{s} \end{pmatrix}可逆

Ai0,i=1,...,sAi\Leftrightarrow |A_i| \neq 0,i=1,...,s \Leftrightarrow A_i可逆,i = 1,2,…,s

A1=(A11A210..0.As1)A^{-1}=\begin{pmatrix}A_{1}^{-1} && \\&A_{2}^{-1} && 0\\&&.\\&&&.\\&0&&&.\\&&&&&A_{s}^{-1} \end{pmatrix}

.

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读