【人工智能学习笔记】 1.3高等代数(一) -18.初等矩阵,分块乘法的初等变换

声明:部分内容来自于慕课,公开课等的课件,仅供学习使用。如有问题,请联系删除。

部分内容来自北京大学,清华大学等的课件

初等矩阵,等价矩阵,用初等变换求矩阵的逆,分块乘法的初等变换


一. 初等矩阵

1.1 定义

由单位矩阵 E 经过一次初等变换得到的矩阵,称为 初等矩阵.

三种初等变换对应着三种初等方阵:

1.对调两行或两列;

2.以数k0k \neq0乘某行或某列;

3.以数k乘某行(列)加到另一 行(列)上去.

1.2 初等矩阵的性质

1 初等矩阵皆可逆,且 其逆仍为初等矩阵.

P(i,j)1=P(i,j)P(i,j)^{-1}=P(i,j)

P(i(k))1=P(i(1k))P(i(k))^{-1}=P(i(\frac{1}{k}))

P(i,j(k))1=P(i,j(k))P(i,j(k))^{-1}=P(i,j(-k))

1.3 引理

对任一矩阵 A作一初等行(列)变换相当于对 A 左(右)乘一个相应的初等矩阵.

P(i,j)A:P(i,j)A: 对换 A的 i j , 两行;

AP(i,j):AP(i,j): 对换 A的 i j , 两列.

P(i(k))A:P(i(k))A: 用非零数 k乘 A 的第 i 列;

AP(i(k)):AP(i(k)): 用非零数 k 乘 A 的第 i 列;

P(i,j(k))A:P(i,j(k))A: A 的第 j行乘以 k加到第 i行 ;

AP(i,j(k)):AP(i,j(k)): A 的第 i 列乘以 k加到第 j列

二. 等价矩阵

2.1 定义

若矩阵B可由A经过一系列初等变换得到,则称A与B等价的.(也称A与B相抵)

注:

① 矩阵的等价关系具有: 反射性、对称性、传递性.

② 等价矩阵的秩相等.

2.2 矩阵等价的有关结论

定理 任一 s×ns \times n 矩阵 A 都与一形式为

(1......0...0..................10...00...00...0..................0...00...0)=(Er000)\begin{pmatrix} 1 &... &... &0 &... &0 \\ . & . & ... &... & ... &... \\ . & ... & 1 & 0 & ... & 0\\ 0& ... &0 &0 &... &0 \\ ... & ... & ... & ... & ... &... \\ 0& ... & 0 & 0&... &0 \end{pmatrix}= \triangle \begin{pmatrix}E_r &0 \\ 0 &0 \end{pmatrix}

的矩阵等价,称之为 A 的标准形, 且主对角线上1的个数 等于R(A)(1的个数可以是零).

2) 矩阵A、B等价

\Leftrightarrow存在初等矩阵P1,P2,...,Ps,Q1,Q2,...,Qt,P_1,P_2,...,P_s,Q_1,Q_2,...,Q_t,

B=P1P2...,PsAQ1Q2...Qt.B=P_1P_2...,P_sAQ_1Q_2...Q_t.

3) n 级方阵A可逆 \LeftrightarrowA的标准形为单位矩阵E.

\LeftrightarrowA与单位矩阵E等价.

4) n 级方阵A可逆 \LeftrightarrowA能表成一些初等矩阵的积,

A=Q1Q2...Qt.A=Q_1Q_2...Q_t.

三. 利用初等变换求逆阵

原理:A0A \neq 0时,由 A=P1P2...PtA=P_1P_2...P_t,有

Pl1Pl11...P11=E,P_l^{-1}P_{l-1}^{-1}...P_{1}^{-1}=E,Pl1Pl11...P11E=A1,P_l^{-1}P_{l-1}^{-1}...P_{1}^{-1}E=A^{-1},

Pl1Pl11...P11(AE)\therefore P_l^{-1}P_{l-1}^{-1}...P_{1}^{-1}(A \vdots E)

=(Pl1Pl11...P11APl1Pl11...P11E)= (P_l^{-1}P_{l-1}^{-1}...P_{1}^{-1}A \vdots P_l^{-1}P_{l-1}^{-1}...P_{1}^{-1}E)

=(EA1)=(E\vdots A^{-1})

即对n×2nn \times 2n矩阵(AE)(A\vdots E) 施行初等行变换,当把A 变成 E时,原来的E就变成A1A^{-1}

四. 分块乘法的初等变换

E分块成(Em00En)\begin{pmatrix} E_m & 0\\ 0 & E_n \end{pmatrix},作1次“初等变换”可得

(0EnEm0),(0EmEn0)\begin{pmatrix} 0 & E_n \\ E_m & 0\end{pmatrix},\begin{pmatrix} 0 & E_m \\ E_n & 0\end{pmatrix};

(P00En),(Em00P)\begin{pmatrix} P & 0 \\ 0 & E_n\end{pmatrix},\begin{pmatrix} E_m & 0 \\ 0 & P\end{pmatrix};

(EmP0En),(Em0PEn).\begin{pmatrix} E_m & P \\ 0 & E_n\end{pmatrix},\begin{pmatrix} E_m & 0 \\ P & E_n\end{pmatrix}.

且有(0EnEm0)(ABCD)=(CDAB),\begin{pmatrix} 0 & E_n \\ E_m & 0\end{pmatrix}\begin{pmatrix} A & B \\ C & D\end{pmatrix}=\begin{pmatrix} C & D\\A & B \end{pmatrix},

(P00En)(ABCD)=(PAPBCD),\begin{pmatrix} P & 0 \\ 0 & E_n\end{pmatrix}\begin{pmatrix} A & B \\ C & D\end{pmatrix}=\begin{pmatrix} PA & PB\\C & D \end{pmatrix},

(Em0PEn)(ABCD)=(ABC+PAD+PB),\begin{pmatrix} E_m & 0 \\ P & E_n\end{pmatrix}\begin{pmatrix} A & B \\ C & D\end{pmatrix}=\begin{pmatrix} A & B\\C+PA & D+PB \end{pmatrix},

特别地,若A可逆,令 P=CA1.P=-CA^{-1}.上式变为:

(Em0CA1En)(ABCD)=(AB0DCA1B)\begin{pmatrix} E_m & 0 \\ -CA^{-1} & E_n\end{pmatrix}\begin{pmatrix} A & B \\ C & D\end{pmatrix}=\begin{pmatrix} A & B\\0 & D-CA^{-1}B \end{pmatrix}

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读