如:an+c1an−1+c2an−2+⋯ckan−k=bna_{n}+c_{1}a_{n-1}+c_{2}a_{n-2}+\cdots c_{k}a_{n-k}=b_{n}an+c1an−1+c2an−2+⋯ckan−k=bn(n>k-1)
(c1,c2⋯ckc_{1},c_{2}\cdots c_{k}c1,c2⋯ck为常数,k为正整数)的递推关系为k阶线性常系数递推关系
a0=d0,a1=d1,⋯ ,ak−1=dk−1a_{0}=d_{0},a_{1}=d_{1},\cdots ,a_{k-1}=d_{k-1}a0=d0,a1=d1,⋯,ak−1=dk−1称为初值条件
1. 当bnb_{n}bn=0时##
当bnb_{n}bn=0,时an+c1an−1+c2an−2+⋯ckan−k=0a_{n}+c_{1}a_{n-1}+c_{2}a_{n-2}+\cdots c_{k}a_{n-k}=0an+c1an−1+c2an−2+⋯ckan−k=0称为k阶线性常系数齐次递推关系
如斐波那契数列Fn−Fn−1−Fn−2=0F_{n}-F_{n-1}-F_{n-2}=0Fn−Fn−1−Fn−2=0(n>2)称为二阶线性常系数齐次递推关系
引入特征方程的定义:
给定an+c1an−1+c2an−2+⋯ckan−k=0a_{n}+c_{1}a_{n-1}+c_{2}a_{n-2}+\cdots c_{k}a_{n-k}=0an+c1an−1+c2an−2+⋯ckan−k=0
记C(x)=xn+c1xn−1+c2xn−2+⋯+ckC(x)=x^{n}+c_{1}x^{n-1}+c_{2}x^{n-2}+\cdots +c_{k}C(x)=xn+c1xn−1+c2xn−2+⋯+ck称为性常系数齐次递推关系的特征多项式,而称C(x)=0为特征方程,方程的根称为特征根。
如斐波那契数列Fn−Fn−1−Fn−2=0F_{n}-F_{n-1}-F_{n-2}=0Fn−Fn−1−Fn−2=0,(n>2)的特征方程为x2−x−1=0x^{2}-x-1=0x2−x−1=0
1. 为实数根时:
求an−an−1−12an−2=0,a0=3,a1=26a_{n}-a_{n-1}-12a_{n-2}=0,a_{0}=3,a_{1}=26an−an−1−12an−2=0,a0=3,a1=26的解
解: 特征方程 x^{2}-x-1=0
根为: x=4 x=-3
故通解为 an=A14n+A2(−3)n,n≥0a_{n}=A_{1}4^{n}+A_{2}(-3)^{n} ,n\geq 0an=A14n+A2(−3)n,n≥0
由初值条件 3=A1+A23=A_{1}+A_{2}3=A1+A2 26=A14+A2(−3)26=A_{1}4+A_{2}(-3)26=A14+A2(−3)
解得 A1=5A_{1}=5A1=5 A2=−2A_{2}=-2A2=−2
所求得解 an=5⋅4n−2(−3)na_{n}=5 \cdot 4^{n}-2(-3)^{n}an=5⋅4n−2(−3)n
2. 有共轭复根时:
设 $ \alpha _{1}$和 $ \alpha _{2}$是一对共轭复根则有
$ \alpha _{1}=\rho (cos\theta +isin\theta)$ α2=α1ˉ=ρ(cosθ−isinθ)\alpha _{2}=\bar{\alpha _{1}}=\rho (cos\theta -isin\theta)α2=α1ˉ=ρ(cosθ−isinθ)
有A1α1n+A2α2nA_{1}\alpha _{1}^{n}+A_{2}\alpha _{2}^{n}A1α1n+A2α2n
=A1ρn(cosθ+isinθ)n+A2ρn(cosθ−isinθ)nA_{1}\rho^{n}(cos\theta +isin\theta)^{n}+A_{2}\rho^{n} (cos\theta -isin\theta)^{n}A1ρn(cosθ+isinθ)n+A2ρn(cosθ−isinθ)n
=A1ρn(cosnθ+isinnθ)+A2ρn(cosnθ−isinnθ)A_{1}\rho^{n}(cosn\theta +isinn\theta)+A_{2}\rho^{n} (cosn\theta -isinn\theta)A1ρn(cosnθ+isinnθ)+A2ρn(cosnθ−isinnθ)
=(A1+A2)ρncosnθ+i(A1−A2)ρnsinnθ(A_{1}+A_{2})\rho^{n}cosn\theta +i(A_{1}-A_{2})\rho^{n}sinn\theta(A1+A2)ρncosnθ+i(A1−A2)ρnsinnθ
=Aρncosnθ+BρnsinnθA\rho^{n}cosn\theta +B\rho^{n}sinn\thetaAρncosnθ+Bρnsinnθ
其中 A=A1+A2A=A_{1}+A_{2}A=A1+A2 B=i(A1−A2)B=i(A_{1}-A_{2})B=i(A1−A2)
计算时,可先求出各对共轭复根,再求A,B
例如 求an−an−1+an−2=0,a0=1,a1=1a_{n}-a_{n-1}+a_{n-2}=0,a_{0}=1,a_{1}=1an−an−1+an−2=0,a0=1,a1=1的解
解 : 特征方程 α2−α+1=0\alpha^{2}-\alpha+1=0α2−α+1=0
根为: α=12±32i=cosπ3+isinπ3\alpha =\frac{1}{2}\pm \frac{\sqrt{3}}{2}i=cos \frac{\pi}{3}+isin\frac{\pi }{3}α=21±23i=cos3π+isin3π
故通解为 an=A1α1n+A2α2n=Acosnπ3+Bsinnπ3a_{n}=A_{1}\alpha_{1}^{n}+A_{2}\alpha_{2}^{n}=Acos \frac{n\pi}{3}+Bsin\frac{n\pi }{3}an=A1α1n+A2α2n=Acos3nπ+Bsin3nπ
由初值条件 1=A 1=A12+B321=A\frac{1}{2}+B\frac{\sqrt{3}}{2}1=A21+B23
解得 A=1 B=33B=\frac{\sqrt{3}}{3}B=33
所求解为 an=cosnπ3+33sinnπ3a_{n}=cos \frac{n\pi}{3}+\frac{\sqrt{3}}{3}sin\frac{n\pi }{3}an=cos3nπ+33sin3nπ
3. 有重根时
an=(B0+B1n+⋯+Bk−1nk−1)αna_{n}=(B_{0}+B_{1}n+\cdots +B_{k-1}n^{k-1})\alpha ^{n}an=(B0+B1n+⋯+Bk−1nk−1)αn
例如求an−2an−1+an−2=0,a1=2,a2=3a_{n}-2a_{n-1}+a_{n-2}=0,a_{1}=2,a_{2}=3an−2an−1+an−2=0,a1=2,a2=3的解
解:特征方程为 x^{2}-2x+1=0 解得x=1为二重根
故通解为 an=(A1+A2n)⋅1n=A1+A2na_{n}=(A_{1}+A_{2}n)\cdot 1^{n}=A_{1}+A_{2}nan=(A1+A2n)⋅1n=A1+A2n
由初值条件 2=A1+A22=A_{1}+A_{2}2=A1+A2 3=A1+A223=A_{1}+A_{2}23=A1+A22
解得 A1=1A_{1}=1A1=1 A2=1A_{2}=1A2=1
所求解为 an=1+na_{n}=1+nan=1+n, n≥1n\geq 1n≥1
总之
若$\alpha $是特征方程的单根,则递推关系的解中含有项
an=Aana_{n}=Aa^{n}an=Aan
若$\alpha $是特征方程的k重根,则递推关系的解中含有项
an=(B0+B1n+⋯+Bk−1nk−1)αna_{n}=(B_{0}+B_{1}n+\cdots +B_{k-1}n^{k-1})\alpha ^{n}an=(B0+B1n+⋯+Bk−1nk−1)αn
若$\alpha_{1},\alpha _{2} 是一对k重共轭复根,且是一对k重共轭复根,且是一对k重共轭复根,且\alpha _{2}=\bar{\alpha _{1}}=\rho (cos\theta -isin\theta)$则递推关系的解中含有项
an=(B0+B1n+⋯+Bk−1nk−1)ρncosnθ+i(C0+C1n+⋯+Ck−1nk−1)ρnsinnθa_{n}=(B_{0}+B_{1}n+\cdots +B_{k-1}n^{k-1})\rho^{n}cosn\theta+i(C_{0}+C_{1}n+\cdots +C_{k-1}n^{k-1})\rho^{n}sinn\thetaan=(B0+B1n+⋯+Bk−1nk−1)ρncosnθ+i(C0+C1n+⋯+Ck−1nk−1)ρnsinnθ
2. 当bn≠0b_{n}\neq 0bn=0时
当bn≠0b_{n}\neq 0bn=0,时an+c1an−1+c2an−2+⋯ckan−k=bna_{n}+c_{1}a_{n-1}+c_{2}a_{n-2}+\cdots c_{k}a_{n-k}=b_{n}an+c1an−1+c2an−2+⋯ckan−k=bn称为k阶线性常系数非齐次递推关系
ana_{n}an的解可表示为齐次关系的解郁非齐次关系的解之和
而齐次递推关系的解渴由特征方程特征根的方法求得,所以我们只要求解非齐次递推关系的一个特解即可
非齐次的解法和非齐次微分方程的通解解法较为类似可以结合二者进行理解
1. 待定系数法1
若bn=rnPm(n)b_{n}=r^{n}P_{m}(n)bn=rnPm(n),其中Pm(n)P_{m}(n)Pm(n)为n的m次多项式(如a+bn为一次多项式),则可设非齐次递推关系的解为
βn∗=rnnkqm(n)\beta _{n}^{*}=r^{n}n^{k}q_{m}(n)βn∗=rnnkqm(n)
其中qm(n)q_{m}(n)qm(n)为系数待定的qm(n)=Bmnm+Bm−1nm−1+⋯+B1n1+B0q_{m}(n)=B_{m}n^{m}+B_{m-1}n^{m-1}+\cdots +B_{1}n^{1}+B_{0}qm(n)=Bmnm+Bm−1nm−1+⋯+B1n1+B0
其中k为r作为特征根的个数,即
\begin{matrix}
k=0 & r不是特征根\
k=k& r是k重特征根
\end{matrix}
如求解an−an−1−12an−2=3n,a0=3,a1=26a_{n}-a_{n-1}-12a_{n-2}=3^{n},a_{0}=3,a_{1}=26an−an−1−12an−2=3n,a0=3,a1=26的解
解: 特征方程 x2−x−12=0x^{2}-x-12=0x2−x−12=0
根为: x=4 x=-3
故齐次关系通解为an=A14n+A2(−3)n,n≥0a_{n}=A_{1}4^{n}+A_{2}(-3)^{n},n \geq 0an=A14n+A2(−3)n,n≥0
自由项为bn=3nb_{n}=3^{n}bn=3n,所以可设特解为an∗=B3na_{n}^{*}=B3^{n}an∗=B3n
那么代入递推关系式有 B3n−B3n−1−12B3n−2=3nB3^{n}-B3^{n-1}-12B3^{n-2}=3^{n}B3n−B3n−1−12B3n−2=3n
解得 B=−32B=-\frac{3}{2}B=−23
故非齐次关系通解为an=A14n+A2(−3)n−323n,n≥0a_{n}=A_{1}4^{n}+A_{2}(-3)^{n}-\frac{3}{2}3^{n},n \geq 0an=A14n+A2(−3)n−233n,n≥0
由初值条件 3=A1+A2−323=A_{1}+A_{2}-\frac{3}{2}3=A1+A2−23 26=A14+A2(−3)−32⋅326=A_{1}4+A_{2}(-3)-\frac{3}{2}\cdot326=A14+A2(−3)−23⋅3
解得 A1=447A_{1}=\frac{44}{7}A1=744 A2=−2514A_{2}=-\frac{25}{14}A2=−1425
所求解为
an=447⋅4n−2514(−3)n−32⋅3n,n≥0a_{n}=\frac{44}{7}\cdot 4^{n}-\frac{25}{14}(-3)^{n}-\frac{3}{2}\cdot 3^{n},n\geq 0an=744⋅4n−1425(−3)n−23⋅3n,n≥0
再如求an+3an−1−10an−2=2n(n+5)的通解a_{n}+3a_{n-1}-10a_{n-2}=2^{n}(n+5)的通解an+3an−1−10an−2=2n(n+5)的通解
解:特征方程 $ x^{2}+3x-10=0$
根为: x=-5 x=2
根据自由项:$ b_{n}=2^{2}(n+5)$,所以特解设为
an∗=n1(B0+B1n)2na_{n}^{*}=n^{1}(B_{0}+B_{1}n)2^{n}an∗=n1(B0+B1n)2n
代入递推关系式
解得
$ a_{n}=A_{1}2{n}+A_{2}(-5){n}-(\frac{87}{49}n+\frac{1}{7}n{2})2{n}$
2. 待定系数法2
若bn=rnPm(n)sinθb_{n}=r^{n}P_{m}(n)sin\thetabn=rnPm(n)sinθ或bn=rnPm(n)cosθb_{n}=r^{n}P_{m}(n)cos\thetabn=rnPm(n)cosθ,其中Pm(n)P_{m}(n)Pm(n)为n的m次多项式(如a+bn为一次多项式),则可设非齐次递推关系的解为
βn∗=rnnk[qm(n)sinnθ+hm(n)sinnθ]\beta _{n}^{*}=r^{n}n^{k}[q_{m}(n)sinn\theta+h_{m}(n)sinn\theta]βn∗=rnnk[qm(n)sinnθ+hm(n)sinnθ]
其中qm(n)q_{m}(n)qm(n)与hm(n)h_{m}(n)hm(n)为系数待定的
qm(n)=Bmnm+Bm−1nm−1+⋯+B1n1+B0q_{m}(n)=B_{m}n^{m}+B_{m-1}n^{m-1}+\cdots +B_{1}n^{1}+B_{0}qm(n)=Bmnm+Bm−1nm−1+⋯+B1n1+B0
hm(n)=Cmnm+Cm−1nm−1+⋯+C1n1+C0h_{m}(n)=C_{m}n^{m}+C_{m-1}n^{m-1}+\cdots +C_{1}n^{1}+C_{0}hm(n)=Cmnm+Cm−1nm−1+⋯+C1n1+C0
其中k为r作为特征根的个数,即
\begin{matrix}
k=0 & r(cos\theta+isin\theta)不是特征根\
k=k& r(cos\theta+isin\theta)是k重特征根
\end{matrix}
如求an−3an−1+2an−2=3sin(nπ2),a0=0,a1=1a_{n}-3a_{n-1}+2a_{n-2}=3sin(n\frac{\pi}{2}),a_{0}=0,a_{1}=1an−3an−1+2an−2=3sin(n2π),a0=0,a1=1的解
解: 特征方程 x2−3x+2=0x^{2}-3x+2=0x2−3x+2=0
根为:x=1 x=2
故齐次关系的通解为 an=A11n+A222,n≥0a_{n}=A_{1}1^n+A_{2}2^{2},n\geq0an=A11n+A222,n≥0
由于自由项: $ b_{n}=3sin(n\frac{\pi}{2})$,所以特解为
an∗=Bcos(nπ2)+Csin(nπ2)a_{n}^{*}=Bcos(n\frac{\pi}{2})+Csin(n\frac{\pi}{2})an∗=Bcos(n2π)+Csin(n2π)
代入递推关系式解得 B=−910B=-\frac{9}{10}B=−109 C=−310C=-\frac{3}{10}C=−103
故通解为
an=A1+A222−910cos(nπ2)−310sin(nπ2),n≥0a_{n}=A_{1}+A_{2}2^{2}-\frac{9}{10}cos(n\frac{\pi}{2})-\frac{3}{10}sin(n\frac{\pi}{2}),n\geq0an=A1+A222−109cos(n2π)−103sin(n2π),n≥0
再由初值条件可得
an=1510−61022−910cos(nπ2)−310sin(nπ2),n≥0a_{n}=\frac{15}{10}-\frac{6}{10}2^{2}-\frac{9}{10}cos(n\frac{\pi}{2})-\frac{3}{10}sin(n\frac{\pi}{2}),n\geq0an=1015−10622−109cos(n2π)−103sin(n2π),n≥0
3. 非齐次递推关系齐次化法
若bn=rb_{n}=rbn=r,r为常数
an+c1an−1+c2an−2+⋯ckan−k=ra_{n}+c_{1}a_{n-1}+c_{2}a_{n-2}+\cdots c_{k}a_{n-k}=ran+c1an−1+c2an−2+⋯ckan−k=r
an−1+c1an−2+c2an−3+⋯ckan−k−1=ra_{n-1}+c_{1}a_{n-2}+c_{2}a_{n-3}+\cdots c_{k}a_{n-k-1}=ran−1+c1an−2+c2an−3+⋯ckan−k−1=r
两式相减则变为齐次递推关系用特征方程求解
若bn=rnb_{n}=r^{n}bn=rn
an+c1an−1+c2an−2+⋯ckan−k=rna_{n}+c_{1}a_{n-1}+c_{2}a_{n-2}+\cdots c_{k}a_{n-k}=r^{n}an+c1an−1+c2an−2+⋯ckan−k=rn
an−1+c1an−2+c2an−3+⋯ckan−k−1=rn−1a_{n-1}+c_{1}a_{n-2}+c_{2}a_{n-3}+\cdots c_{k}a_{n-k-1}=r^{n-1}an−1+c1an−2+c2an−3+⋯ckan−k−1=rn−1
式子二乘以r,两式相减,变为齐次关系式,用特征方程求解
如求an−an−1−6an−2=3n,a0=5,a1=2a_{n}-a_{n-1}-6a_{n-2}=3^{n},a_{0}=5,a_{1}=2an−an−1−6an−2=3n,a0=5,a1=2的解
解: 有 an−an−1−6an−2=3na_{n}-a_{n-1}-6a_{n-2}=3^{n}an−an−1−6an−2=3n
an−1−an−2−6an−3=3n−1a_{n-1}-a_{n-2}-6a_{n-3}=3^{n-1}an−1−an−2−6an−3=3n−1
两式相减得
由 an−4an−1−3an−2+18an−3=0,a2=41a_{n}-4a_{n-1}-3a_{n-2}+18a_{n-3}=0,a_{2}=41an−4an−1−3an−2+18an−3=0,a2=41
特征方程为 x{3}-x{2}-3x+18=0
解得 x=-2,x=3(为2重根)
故an=A(−2)n+(B+Cn)3na_{n}=A(-2)^{n}+(B+Cn)3^{n}an=A(−2)n+(B+Cn)3n
由初值条件得
an=7425(−2)n+(5125+35n)3na_{n}=\frac{74}{25}(-2)^{n}+(\frac{51}{25}+\frac{3}{5}n)3^{n}an=2574(−2)n+(2551+53n)3n
本文参考太原理工大学魏毅强教授组合数学课件

本文详细介绍了线性常系数递推关系的解法,包括齐次与非齐次递推关系,并通过实例演示了如何利用特征方程求解递推序列。
2070

被折叠的 条评论
为什么被折叠?



