高数之极限

本文详细探讨了数学中的极限概念,包括数列极限、函数极限、无穷小和无穷大的性质,以及极限的运算和重要定理。通过阐述极限的基本定义、性质和运算法则,揭示了数学分析的基础和魅力。
摘要由CSDN通过智能技术生成

基本概念

  设 x n {x_n} xn为一个无穷实数数列的集合,如果存在实数 a a a,对于任意给定的正数 ε \varepsilon ε(不论其多么小),总存在正整数 N N N,使得当 n > N n > N n>N时,不等式 ∣ x n − a ∣ < ε |x_n - a| < \varepsilon xna<ε都成立,那么就称常数 a a a是数列 { x n } \{x_n\} { xn}极限,或者数列 { x n } \{x_n\} { xn}收敛于 a a a,记作 lim ⁡ n → ∞ x n = a \displaystyle{\lim_{n \to \infty} x_n = a} nlimxn=a x n ⟶ a    ( n ⟶ ∞ ) x_n \longrightarrow a \; (n \longrightarrow \infty) xna(n)
  对于数列 { x n } \{x_n\} { xn},如果存在正数 M M M,使得对于一切 x n x_n xn都满足不等式 ∣ x n ∣ ≤ M |x_n| \le M xnM,则称数列 { x n } \{x_n\} { xn}是有界的,否则为无界的。
  子数列是从一个数列中抽取几个数,按照它们在原数列中的顺序所组成的新的数列。
  单调数列指各项的值总是依次增加(或不减小),或总是依次减小(或不增加)的数列。
  收敛数列的性质:

  1. 极限的唯一性:如果数列 { x n } \{x_n\} { xn}收敛,那么它的极限唯一。
  2. 收敛数列的有界性:如果数列 { x n } \{x_n\} { xn}收敛,那么数列 { x n } \{x_n\} { xn}一定有界。
  3. 收敛数列的保号性:如果 lim ⁡ n → ∞ x n = a \displaystyle{\lim_{n \to \infty} x_n = a} nlimxn=a,且 a > 0 a > 0 a>0(或 a < 0 a < 0 a<0),那么存在正整数 N N N,当 n > N n > N n>N时,都有 x n > 0 x_n > 0 xn>0(或 x n < 0 x_n < 0 xn<0)。
  4. 如果数列 { x n } \{x_n\} { xn}从某项起有 x n ≥ 0 x_n \ge 0 xn0(或 x n ≤ 0 x_n \le 0 xn0),且 lim ⁡ n → ∞ x n = a \displaystyle{\lim_{n \to \infty} x_n = a} nlimxn=a,那么 a ≥ 0 a \ge 0 a0(或 a ≤ 0 a \le 0 a0)。
  5. 收敛数列与其子数列间的关系:如果数列 { x n } \{x_n\} { xn}收敛于 a a a,那么它的任一子数列也收敛,且极限也是 a a a

函数极限

  以 x 0 x_0 x0为中心的任何开区间称为点 x 0 x_0 x0邻域,记作 U ( x 0 ) U(x_0) U(x0)。在 U ( x 0 ) U(x_0) U(x0)中去掉中心 x 0 x_0 x0后,称为点 x 0 x_0 x0去心邻域,记作 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0)
  设 δ > 0 \delta > 0 δ>0,则开区间 ( x 0 − δ ,    x 0 + δ ) (x_0 - \delta, \; x_0 + \delta) (x0δ,x0+δ)称为点 x 0 x_0 x0 δ \delta δ邻域,记作 U ( x 0 ,    δ ) U(x_0, \; \delta) U(x0,δ),点 x 0 x_0 x0的去心 δ \delta δ邻域记作 U ˚ ( x 0 ,    δ ) \mathring{U}(x_0, \; \delta) U˚(x0,δ) δ \delta δ称为邻域半径
  设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义,如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε(无论它多么小),总存在正数 δ \delta δ,使得当 x x x满足不等式 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ时,对应的函数值 f ( x ) f(x) f(x)都满足不等式 ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon f(x)A<ε,那么称常数 A A A为函数 f ( x ) f(x) f(x) x ⟶ x 0 x \longrightarrow x_0 xx0时的极限,记作 lim ⁡ x → x 0 f ( x ) = A \displaystyle{\lim_{x \to x_0} f(x) = A} xx0limf(x)=A
  在 lim ⁡ x → x 0 f ( x ) = A \displaystyle{\lim_{x \to x_0} f(x) = A} xx0limf</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值