几种经典的滤波算法

几种经典的滤波算法(转)

几种经典的滤波算法(转)
1、限幅滤波法(又称程序判断滤波法)
      A、方法:
              根据经验判断,确定两次采样允许的最大偏差值(设为A)
              每次检测到新值时判断:
              如果本次值与上次值之差<=A,则本次值有效
              如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
      B、优点:
              能有效克服因偶然因素引起的脉冲干扰
      C、缺点
              无法抑制那种周期性的干扰
              平滑度差
   
2、中位值滤波法
      A、方法:
              连续采样N次(N取奇数)
              把N次采样值按大小排列
              取中间值为本次有效值
      B、优点:
              能有效克服因偶然因素引起的波动干扰
              对温度、液位的变化缓慢的被测参数有良好的滤波效果
      C、缺点:
              对流量、速度等快速变化的参数不宜

3、算术平均滤波法
      A、方法:
              连续取N个采样值进行算术平均运算
              N值较大时:信号平滑度较高,但灵敏度较低
              N值较小时:信号平滑度较低,但灵敏度较高
              N值的选取:一般流量,N=12;压力:N=4
      B、优点:
              适用于对一般具有随机干扰的信号进行滤波
              这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
      C、缺点:
              对于测量速度较慢或要求数据计算速度较快的实时控制不适用
              比较浪费RAM
             
4、递推平均滤波法(又称滑动平均滤波法)
      A、方法:
              把连续取N个采样值看成一个队列
              队列的长度固定为N
              每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
              把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
              N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
      B、优点:
              对周期性干扰有良好的抑制作用,平滑度高
              适用于高频振荡的系统   
      C、缺点:
              灵敏度低
              对偶然出现的脉冲性干扰的抑制作用较差
              不易消除由于脉冲干扰所引起的采样值偏差
              不适用于脉冲干扰比较严重的场合
              比较浪费RAM
             
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
      A、方法:
              相当于“中位值滤波法”+“算术平均滤波法”
              连续采样N个数据,去掉一个最大值和一个最小值
              然后计算N-2个数据的算术平均值
              N值的选取:3~14
      B、优点:
              融合了两种滤波法的优点
              对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
      C、缺点:
              测量速度较慢,和算术平均滤波法一样
              比较浪费RAM


6、限幅平均滤波法
      A、方法:
              相当于“限幅滤波法”+“递推平均滤波法”
              每次采样到的新数据先进行限幅处理,
              再送入队列进行递推平均滤波处理
      B、优点:
              融合了两种滤波法的优点
              对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
      C、缺点:
              比较浪费RAM

7、一阶滞后滤波法
      A、方法:
              取a=0~1
              本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
      B、优点:
              对周期性干扰具有良好的抑制作用
              适用于波动频率较高的场合
      C、缺点:
              相位滞后,灵敏度低
              滞后程度取决于a值大小
              不能消除滤波频率高于采样频率的1/2的干扰信号
             
8、加权递推平均滤波法
      A、方法:
              是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
              通常是,越接近现时刻的数据,权取得越大。
              给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
      B、优点:
              适用于有较大纯滞后时间常数的对象
              和采样周期较短的系统
      C、缺点:
              对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
              不能迅速反应系统当前所受干扰的严重程度,滤波效果差

9、消抖滤波法
      A、方法:
              设置一个滤波计数器
              将每次采样值与当前有效值比较:
              如果采样值=当前有效值,则计数器清零
              如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
                      如果计数器溢出,则将本次值替换当前有效值,并清计数器
      B、优点:
              对于变化缓慢的被测参数有较好的滤波效果,
              可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
      C、缺点:
              对于快速变化的参数不宜
              如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

10、限幅消抖滤波法
      A、方法:
              相当于“限幅滤波法”+“消抖滤波法”
              先限幅,后消抖
      B、优点:
              继承了“限幅”和“消抖”的优点
              改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
      C、缺点:
              对于快速变化的参数不宜


第11种方法:IIR 数字滤波器

A. 方法:
    确定信号带宽, 滤之。
    Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)

B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab)
C. 缺点:运算量大。
 

//---------------------------------------------------------------------

软件滤波的C程序样例

10种软件滤波方法的示例程序

假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();

1、限副滤波

#define A 10

char value;

char filter()
{
    char  new_value;
    new_value = get_ad();
    if ( ( new_value - value > A ) || ( value - new_value > A )
          return value;
    return new_value;
               
}

2、中位值滤波法

#define N  11

char filter()
{
    char value_buf[N];
    char count,i,j,temp;
    for ( count=0;count
    {
          value_buf[count] = get_ad();
          delay();
    }
    for (j=0;j
    {
          for (i=0;i
          {
                if ( value_buf>value_buf[i+1] )
                {
                      temp = value_buf;
                      value_buf = value_buf[i+1];
                        value_buf[i+1] = temp;
                }
          }
    }
    return value_buf[(N-1)/2];
     

3、算术平均滤波法


#define N 12

char filter()
{
    int  sum = 0;
    for ( count=0;count
    {
          sum + = get_ad();
          delay();
    }
    return (char)(sum/N);
}

4、递推平均滤波法(又称滑动平均滤波法)

#define N 12

char value_buf[N];
char i=0;

char filter()
{
    char count;
    int  sum=0;
    value_buf[i++] = get_ad();
    if ( i == N )    i = 0;
    for ( count=0;count
          sum = value_buf[count];
    return (char)(sum/N);
}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

#define N 12

char filter()
{
    char count,i,j;
    char value_buf[N];
    int  sum=0;
    for  (count=0;count
    {
          value_buf[count] = get_ad();
          delay();
    }
    for (j=0;j
    {
          for (i=0;i
          {
                if ( value_buf>value_buf[i+1] )
                {
                      temp = value_buf;
                      value_buf = value_buf[i+1];
                        value_buf[i+1] = temp;
                }
          }
    }
    for(count=1;count
          sum += value[count];
    return (char)(sum/(N-2));
}

6、限幅平均滤波法
 
略 参考子程序1、3

7、一阶滞后滤波法


#define a 50

char value;

char filter()
{
    char  new_value;
    new_value = get_ad();
    return (100-a)*value + a*new_value;
}

8、加权递推平均滤波法


#define N 12

char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

char filter()
{
    char count;
    char value_buf[N];
    int  sum=0;
    for (count=0,count
    {
          value_buf[count] = get_ad();
          delay();
    }
    for (count=0,count
          sum += value_buf[count]*coe[count];
    return (char)(sum/sum_coe);
}

9、消抖滤波法

#define N 12

char filter()
{
    char count=0;
    char new_value;
    new_value = get_ad();
    while (value !=new_value);
    {
          count++;
          if (count>=N)    return new_value;
            delay();
          new_value = get_ad();
    }
    return value;   
}

10、限幅消抖滤波法

略 参考子程序1、9

11、IIR滤波例子

int  BandpassFilter4(int InputAD4)
{
      int  ReturnValue;
      int  ii;
      RESLO=0;
      RESHI=0;
      MACS=*PdelIn;
      OP2=1068; //FilterCoeff4[4];
      MACS=*(PdelIn+1);
      OP2=8;      //FilterCoeff4[3];
      MACS=*(PdelIn+2);
      OP2=-2001;//FilterCoeff4[2];
      MACS=*(PdelIn+3);
      OP2=8;      //FilterCoeff4[1];
      MACS=InputAD4;
      OP2=1068; //FilterCoeff4[0];
      MACS=*PdelOu;
      OP2=-7190;//FilterCoeff4[8];
      MACS=*(PdelOu+1);
      OP2=-1973; //FilterCoeff4[7];
      MACS=*(PdelOu+2);
      OP2=-19578;//FilterCoeff4[6];
      MACS=*(PdelOu+3);
      OP2=-3047; //FilterCoeff4[5];
      *p=RESLO;
      *(p+1)=RESHI;
      mytestmul<<=2;
      ReturnValue=*(p+1);
      for  (ii=0;ii<3;ii++)
      {
        DelayInput[ii]=DelayInput[ii+1];
        DelayOutput[ii]=DelayOutput[ii+1];
        }
        DelayInput[3]=InputAD4;
        DelayOutput[3]=ReturnValue;
       
    //  if (ReturnValue<0)
    //  {
    //  ReturnValue=-ReturnValue;
    //  }
      return ReturnValue; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值