作者Toby,原文来源公众号Python风控模型,《金融风控催收评分卡模型》
之前Toby老师发布文章《深入解析:金融风控行为评分卡模型(Behavior scorecard)》用户反馈较好,今天写文章探讨催收评分卡。
催收背景
近年,黑猫投诉上关于举报违法催收的信息越来越多。截止Toby老师发稿,已经有93万多条投诉记录。根据Toby老师经验,并非每次举报都一定会被黑猫投诉接受,真实催收投诉越大于93万条。
政府相应民意,一直在加强金融监管,打击非法催收行为力度越来越大,以保护消费者权益和维护金融市场秩序。以下是一些相关的信息和措施:
1. 法律法规的制定与完善
-
《中华人民共和国民法典》:明确了债权人和债务人的权利与义务,对催收行为进行了法律约束。
-
《关于规范整顿“现金贷”业务的通知》:要求所有贷款业务必须遵守国家法律法规,严禁暴力催收等非法行为。
-
《互联网金融逾期债务催收自律公约(试行)》:互联网金融协会发布,明确了催收行为的自律规范。
2. 监管政策的实施
-
中国银保监会:加强对银行业和保险业的监管,要求金融机构建立完善的债务催收内控机制,严禁违法违规催收。
-
公安部:开展专项行动,打击非法集资、非法放贷以及伴随的暴力催收等犯罪行为。
3. 打击非法催收的行动
-
“扫黑除恶”专项行动:将暴力催收等行为列为打击重点,严惩黑恶势力。
-
“净网行动”:打击网络犯罪,包括通过网络进行的非法催收活动。
4. 消费者权益保护
-
消费者协会:提供消费者权益保护,接受消费者投诉,对非法催收行为进行曝光和追责。
5. 举例
-
暴力催收:通过殴打、辱骂、恐吓等手段迫使债务人还款,这是典型的非法催收行为。
-
侵犯隐私:非法获取债务人个人信息,包括家庭成员信息、住址等,并以此进行威胁。
-
骚扰债务人:频繁拨打债务人电话,甚至骚扰债务人的工作单位和亲朋好友。
-
虚假诉讼:通过伪造证据等方式提起虚假诉讼,企图通过法律手段迫使债务人还款。
国家对非法催收的打击力度越来越大,旨在构建一个健康、有序的金融市场环境。同时,金融机构也应加强内部管理,合规经营,特别是重视催收评分卡的建设,共同促进金融市场的稳定发展。
催收评分卡概述
在金融风控领域,催收评分卡(Collection Score Card,简称C卡)是一种重要的贷后管理工具。申请评分卡、行为评分卡和催收评分卡常合并称为“ABC卡”,应用在贷前、贷中和贷后管理。催收评分卡所在风控环节如下图:
催收评分卡与其他评分卡的区别
催收评分卡(C卡)与申请评分卡(A卡)和行为评分卡(B卡)相比,有其独特的特点:
-
使用时间:C卡专注于贷后阶段,尤其是客户出现逾期后的风险评估。
-
数据要求:C卡需要更全面的数据,包括客户的逾期信息、催收历史和对催收措施的反应等。
-
模型构建:C卡模型需要考虑催收策略的影响,因此会加入与催收相关的变量。
-
预测目的:C卡的目的是预测客户对催收措施的反应,指导金融机构采取最有效的催收策略。
催收评分卡作用
催收评分卡作用是预判对逾期用户的催收力度。对于信誉较好的用户,不催收或轻量催收即可回款。对于有长时间逾期倾向的用户,需要从逾期开始就重点催收。逾期天数越多,催收难度越大。
催收评分卡通过量化分析,有效提升催收效率,最大化收回欠款,减少资产损失,帮助金融机构更有效地管理逾期贷款。Toby老师将带您全面了解催收评分卡的构建、应用及其在金融风控中的重要性。
催收业务知识
业务上催收一般分为多个坐席,M1,M2,M3等不同坐席员工经验和业务能力相差甚大。AI人工智能常用于前期自动化催收。
C卡主要是在贷款逾期的第一个月(M1阶段)起作用,因为这时候催收成功的几率最高,一旦客户逾期进入到第二个月(M2),催收难度就会增加。因此,金融机构的催收策略和模型都会特别关注M1阶段。
在M1阶段,催收工作主要分为三类模型:
-
缓催模型:这个模型针对的是那些可能因为忘记而逾期的客户,他们往往只需要一点点提醒就会还款。缓催模型的目的是通过减少催收动作来节省人力成本。
-
迁徙率模型:这个模型用来预测资产从一种状态转变为另一种状态的可能性,比如从正常状态转变为坏账状态,帮助金融机构预估不良资产的风险。
-
失联模型:这个模型关注的是如何识别和处理那些联系不上的客户。它的关键点在于确定什么情况下将客户定义为失联,比如连续几次电话未接通。失联模型帮助金融机构及时采取措施,比如委托外部机构或修复失联信息。
催收绩效指标
-
催收绩效的衡量标准包括多个关键指标,用以评估催收工作的成效:
-
回款率:成功回收的欠款金额与总欠款金额的比例。
-
递延率:未能按时回收的欠款金额与到期应回收欠款金额的比例。
-
BP/PTP%:即回款率与目标回款率的比例,用于衡量实际回收与目标回收之间的差距。
-
PRC%:即实际回收金额与预期回收金额的比例,反映催收效率。
-
PTP%:即催收周期内实际回收金额与周期开始时欠款总额的比例。
-
KPTP%:可能指的是关键绩效指标与目标的比率,具体含义可能因机构而异。
-
-
操作绩效的衡量标准则侧重于催收过程中的操作效率和效果:
-
外呼次数:催收人员进行的电话外呼总数,反映催收活动的频率。
-
有效拨打率:成功接通的电话次数与外呼次数的比例,衡量外呼效率。
-
其他查找成效:可能包括催收人员在查找失联客户、收集客户信息等方面的成效
-
催收评分卡的构建思
催收评分卡的构建是一个系统工程,涉及到数据收集、特征工程、模型开发等多个环节。以下是构建催收评分卡的基本思路:
1.数据收集与清洗:金融机构需要整合来自不同渠道的数据,如基本信息、银行交易记录、社交媒体行为、信用历史等,以获得全面的客户画像,维度尽可能丰富。数据收集后进行清洗,去除重复、处理缺失值和异常值。在特殊月份和活动周期客户信息变化比较大,容易引起变量值较大波动。数据清洗中剔除特殊月份的样本,还有做活动引流时样本,保证出催动作和客群情况的稳定性。我看互联网上有些文章称要保证样本的均衡,这是不实际,不合理的。金融风控真实数据就是高度不平衡,我们人为55开平衡后,会误导模型判断能力。
2.特征选择和数据来源:重点关注还款意愿和还款能力,包括客户收入、资产情况、履约行为和催收记录等。基于原始数据生成新的特征,如交易频率、消费习惯等,并挑选对风险预测最有价值的特征。具体特征选择和数据来源如下图:
3.模型构建:选择合适的分类模型,如逻辑回归、随机森林等,进行训练,并将其结果转化为直观的信用分数。银行最常用的是采用逻辑回归等统计模型,结合WOE(Weight of Evidence)和IV(Information Value)等指标,评估变量的预测能力。
4. 模型验证:通过KS统计量、AUC值、Gini系数等指标,验证模型的区分能力和预测精度。使用精确率、召回率、F1分数、ROC曲线下的面积(AUC)等评估指标,通过交叉验证、网格搜索等方法调整模型参数,提升预测准确性。Toby老师根据多年建模经验,催收评分卡的AUC一般比较高,很多高于0.8,原因是建立c卡时,用户已经有大量逾期数据表现。如果用户之前有逾期,那么后面也有逾期倾向。
5.模型部署与监控:将模型部署到生产环境,并建立监控机制,定期检查模型表现,确保模型的稳定性和有效性。如果模型性能例如AUC,ks下降太厉害,或PSI高于0.25,Toby老师建议重新建模,迭代模型。
催收评分卡的应用场景
催收评分卡在金融风控中的应用场景广泛,主要包括:
-
逾期风险评估:预测借款人未来逾期的可能性,帮助金融机构识别高风险客户群体。
-
催收策略制定:根据评分结果,对不同风险等级的客户采取差异化的催收策略。
-
催收效果监控:通过比较催收前后的评分变化,评估催收措施的有效性。
-
坏账准备金计提:评分结果可作为坏账准备金计提的依据,帮助金融机构合理预估潜在的信贷损失。
-
客户关系管理:识别有潜在还款困难的客户,提前进行沟通和协助,维护客户关系。
总结
催收评分卡作为金融风控的精细化管理工具,其构建和应用需要综合考虑数据、模型、市场变化等多方面因素。通过科学的方法和持续的优化,催收评分卡能够有效地帮助金融机构提高催收效率,降低资产损失,同时优化客户关系管理。随着金融科技的发展,催收评分卡模型将更加智能化、高效化,为金融机构提供更加精准、全面的风险管理支持。
版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。