leetcode 算法天池举办,菜鸡总结一下吧。
221021天池-02. 光线反射
这道题还是比较简单的,直接就是一个暴搜。会有下面的性质方便编码,假设当前的位置是(x, y) , x增量和y的增量是(dirx, diry):
- 如果是L镜子,那么会把原来的增量改变为(diry, dirx), 并且移动到(x + diry, y + dirx)的格子。
- 如果是R镜子,那么会把原来的增量改变为(-diry, -dirx), 并且移动到(x - diry, y - dirx)的格子。
- 否则,增量不变,移动到(x + dirx, y + diry)的格子。
也就是说,这里的增量可以表示一种朝向,初始增量为(1, 0),表示朝下走。碰见左镜子,增量为(0, 1),就变成朝右走了。同理如果朝上走的光为(-1, 0), 碰见左镜子,就会向左走(0, -1)。也就是增量为(0, -1)。这样可以总结为上面的规律。
代码就很简单了。
class Solution {
public:
int n, m;
vector<string>grid;
int dfs(int dirx, int diry, int x, int y) {
if (x < 0 || x == n || y < 0 || y == m) {
return 0;
}
if (grid[x][y] == 'L') {
return dfs(diry, dirx, x + diry, y + dirx) + 1;
} else if (grid[x][y] == 'R') {
return dfs(-diry, -dirx, x - diry, y - dirx) + 1;
} else {
return dfs(dirx, diry, x + dirx, y + diry) + 1;
}
}
int getLength(vector<string>& grid) {
n = grid.size(), m = grid[0].size();
this->grid = grid;
return dfs(1, 0, 0, 0);
}
};
[221021天池-03. 整理书架](221021天池-03. 整理书架)
题目很简单,但是我没想到,以为是子序列的题目,最后发现是单调栈。忏愧,学的还是不扎实。
字典序最小,那么如果前面的比后面的大,前面的还能仍的话,就可以直接丢弃了。这样字典序是最小的。
实现方面的话,需要统计每一个字符还剩下多少,还有就是需要统计每一个字符在栈里有多少,如果大于等于limit了,就直接扔掉就行了。
class Solution {
public:
vector<int> arrangeBookshelf(vector<int>& order, int limit) {
unordered_map<int, int>left; // 总共剩下的数量,也就是总的减去 丢掉 的。
int n = order.size();
for (int x : order) {
left[x]++;
}
stack<int>s;
unordered_map<int, int>inS;
for (int x: order) {
if (inS[x] == limit) {
left[x]--;
continue;
}
while(!s.empty() && s.top() > x && left[s.top()] > limit) { // 栈顶元素大直接删除,但是需要足够数量
left[s.top()]--;
inS[s.top()]--;
s.pop();
}
s.push(x);
inS[x]++;
}
vector<int>ans;
while (!s.empty()) {ans.push_back(s.top()); s.pop(); }
reverse(ans.begin(), ans.end());
return ans;
}
};
221021天池-04. 意外惊喜
初始一看以为是分组背包问题,高兴了一下,结果写完代码,直接tle。真的是意外惊喜,还是两个意外惊喜。这个和2218. 从栈中取出 K 个硬币的最大面值和题目很类似,但是数据量比他大,并且多了一个递增的条件。就不能使用分组背包的代码了。
先放上代码,题解明天在写吧。
package main
// https://space.bilibili.com/206214
func brilliantSurprise(a [][]int, lim int) (ans int) {
dp := make([]int, lim+1)
var f func([][]int, []int)
f = func(a [][]int, tot []int) {
if len(a) == 1 {
s := 0
for i, v := range a[0] {
if i >= lim {
break
}
s += v
ans = max(ans, dp[lim-(i+1)]+s)
}
return
}
tmp := append([]int{}, dp...)
m := len(a) / 2
for i, r := range a[:m] {
for j := lim; j >= len(r); j-- {
dp[j] = max(dp[j], dp[j-len(r)]+tot[i])
}
}
f(a[m:], tot[m:])
dp = tmp
for i, r := range a[m:] {
for j := lim; j >= len(r); j-- {
dp[j] = max(dp[j], dp[j-len(r)]+tot[m+i])
}
}
f(a[:m], tot[:m])
}
tot := make([]int, len(a))
for i, r := range a {
for _, v := range r {
tot[i] += v
}
}
f(a, tot)
return
}
func max(a, b int) int {
if b > a {
return b
}
return a
}


1万+

被折叠的 条评论
为什么被折叠?



