大数据
文章平均质量分 77
大数据技术应用介绍
云梦优选
云梦优选致力于在校大学生计算机前沿技术复合型才培养,让每位IT学子从校园走上工作岗位时能无缝连接。
展开
-
一 文讲解大数据采集汇聚
数据汇聚和数据采集虽然看似相似,但实际上它们有不同的目的和实施方式。数据采集是一种主动的数据生产过程,涉及到通过合适的方法记录终端对象的业务流程信息,并借助中间系统进行数据流转,最终写入目标存储系统中。而数据汇聚则是从另一个维度来考虑的问题,它关注的是已存在数据的迁移与同步,即通过一定的手段将一个数据源中的数据搬运到另一个数据源上,这个过程有时也被称作“数据集成”。因此,企业可以根据需要汇聚的数据类型以及数据模式等因素,选择合适的数据汇聚工具。原创 2024-12-12 09:15:41 · 2115 阅读 · 0 评论 -
大数据学习路线
大数据学习路线通常是一个系统而全面的过程,涵盖了从基础知识到高级技术的多个方面。原创 2024-08-05 10:00:24 · 764 阅读 · 0 评论 -
如何构建大数据采集汇聚系统?
总结项目经验:对项目实施过程中的经验教训进行总结和归纳,为后续项目提供参考。展望未来发展:根据业务需求和技术发展趋势,对系统进行持续改进和升级,以适应未来发展的需要。通过以上步骤和要点,可以构建一个高效、可靠的大数据采集汇聚系统,为企业决策提供有力支持。原创 2024-08-02 12:04:02 · 1000 阅读 · 0 评论 -
北京目录链有哪些应用场景
北京目录链作为全国首个超大城市区块链基础设施,具有广泛的应用场景。原创 2024-07-30 09:50:06 · 908 阅读 · 0 评论 -
民政大数据全景画像研究
民政大数据全景画像是指利用大数据技术对民政部门所掌握的海量数据进行深度挖掘和分析,从而构建出全面、精准、实时的民政对象画像,以支持民政工作的科学决策和精准服务。原创 2024-07-29 19:49:15 · 487 阅读 · 0 评论 -
大数据采集汇集系统可以用于哪些场景
大数据采集汇集系统由于其强大的数据收集、处理和存储能力,可以应用于多个行业和领域的多种场景。以上只是大数据采集汇集系统应用的一部分场景,随着技术的不断发展和应用场景的不断拓展,其应用范围和深度还将不断扩大。原创 2024-07-29 19:46:51 · 880 阅读 · 0 评论 -
大数据采集汇聚系统研究
大数据采集汇集系统通过集成各种数据源,如数据库、日志文件、传感器、社交媒体等,实现数据的全面收集。系统采用先进的数据处理技术,对收集到的数据进行清洗、去重、格式转换等预处理操作,确保数据的质量和可用性。随后,系统将处理后的数据存储在高性能的存储介质中,以便后续的分析和利用。原创 2024-07-29 19:45:47 · 1099 阅读 · 0 评论 -
搭建数据目录——从碎片化数据到资产化数据的必由之路
随着今年初财政部会计司《企业数据资源会计处理暂行规定》的正式实施,我国数据资产入表的步伐正稳步加快。这不仅标志着数据作为新型生产要素的地位得到进一步确认,也为广大企业探索数据资产化管理、释放数据价值提供了更加清晰的政策指引与实践路径。原创 2024-07-29 09:33:38 · 677 阅读 · 0 评论 -
一体化政务大数据体系-数据目录系统
截止目前,全国各地已初步完成一体化政务服务平台的建立,数据共享交换平台作为一体化政务服务平台的数据资源层,基于政务服务资源目录和数据交换,汇聚政务服务事项库、办件信息库、监管信息共享库、信用信息库等政务服务业务信息库,共享利用人口、法人、地理空间信息、电子证照等基础信息资源库,实现数据资源共建共享,共同构成政务服务数据共享平台,为政务服务提供统一的数据支撑。数据目录系统的工作核心是数据编目,数据编目的核心在于数据目录梳理,须开展数据全面摸底并梳理,支撑各政务部门开展数据目录编制。原创 2024-07-29 09:26:34 · 1366 阅读 · 0 评论 -
大数据:数据标准化及质量管控方案
本数据标准化及质量管控解决方案融合了科学的数据标准制定、严格的数据质量监控以及全面的数据生命周期管理,助力企业打造高效、可靠的数据管理基石。本方案是一套全面的解决方案,旨在为企业构建科学、规范的数据管理体系,确保数据的准确性、一致性、完整性、合理性、及时性和有效性,从而支撑业务数据的高效应用与正确决策。综上所述,本数据标准化及质量管控综合方案是企业构建高效、规范数据管理体系的理想选择,将为企业数据质量的提升与价值的挖掘提供强大动力。原创 2024-07-28 16:51:46 · 672 阅读 · 0 评论 -
大数据指标体系建设方案
大数据指标体系建设方案是一个综合性的项目,旨在通过构建科学、合理的数据指标体系,帮助企业全面、深入地了解业务状况,优化决策过程,提升运营效率。原创 2024-07-28 16:42:47 · 601 阅读 · 0 评论 -
基于Flink SQL CDC的实时数据同步
Flink SQL CDC是Apache Flink生态系统中的一个组件,用于捕获数据源中的变化,并以表格格式进行表示。它基于数据库的事务日志(如MySQL的binlog),实时地捕获数据库中的变更操作(包括INSERT、UPDATE、DELETE等),并将其转化为流式数据。这使得用户能够实时地获取和处理数据库中的数据变化。基于Flink SQL CDC的实时数据同步方案是一种高效、可靠的数据处理方案。它利用Flink的强大流处理能力和Debezium的变更数据捕获能力,实现了数据的实时捕获、处理和同步。原创 2024-07-27 22:53:40 · 687 阅读 · 0 评论 -
flink 实现大数据实时数据采集
通过 Flink,可以构建一个高效、可扩展的实时数据采集和处理系统。从数据源接入到数据处理,再到数据输出,Flink 提供了丰富的 API 和工具来支持你的需求。同时,通过监控和调优,你可以确保系统的稳定性和性能。原创 2024-07-27 22:50:07 · 1173 阅读 · 0 评论 -
大数据的数据质量有效提升的研究
国家市场监督管理总局的企业信用监管数据质量监测系统是一项重要的数据管理工具,它通过自动化、智能化的监测手段,支持了企业信用监管数据质量的提升。该系统的运行不仅提高了数据质量管理效率,还推动了信用监管与智慧监管的深度融合,对于构建数据治理常态长效机制、实现国家治理体系和治理能力现代化具有重要意义。综上所述,大数据的数据质量有效提升需要从数据采集、处理、管理到应用等多个环节入手,通过制定规范、采用先进技术、加强管理等手段,不断提高数据的准确性、完整性和可用性。原创 2024-07-27 22:41:36 · 1044 阅读 · 0 评论
分享