# 1007. Maximum Subsequence Sum (25)

400 ms

65536 kB

16000 B

Standard

CHEN, Yue

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4

//特殊测试用例，我目前想到的
//用例1：-1 0 -2 只有一个0，其余全是负数
//用例2：-1 -2 -3 -4 全是负数
//用例3:-1 -3 2 -5 只有一个正数

int main()
{
int n;
int num[10000] = {0};
int max[10000] = { 0 };	//起点为i时，Max[i]存放和的最大值
int maxloc[10000] = {0};//起点为i时，终点为maxloc[i],取得最大值
cin >> n;
int count = 0;
for (int i = 0; i < n; i++)
{
cin >> num[i];
if (num[i] < 0)
count++;
}
if (count == n)//一开始写代码没写上这种特殊情况，导致一个测试用例过不了
{
cout << 0 << " " << num[0] << " " << num[n-1];
}
else
{
for (int i = 0; i < n; i++)
{
int firstnum = num[i];
int sum = firstnum;

max[i] = sum;//一开始这里没有提前赋值，导致错误
maxloc[i] = i;
for (int j = i+1; j < n; j++)
{
int lastnum = num[j];
int temp = sum + lastnum;
if (temp>max[i])
{
max[i] = temp;
maxloc[i] = j;
}
sum = temp;
}
}

int maxvalue = max[0], maxl = 0;//注意这里一开始赋初值时，不要赋值0，而应该赋值为数组里面的首元素，这个地方导致一个测试用例不过，调了半天

for (int i = 0; i < n; i++)
{
if (max[i]>maxvalue)
{
maxvalue = max[i];
maxl = i;
}
}

cout << maxvalue << " " <<num[maxl] << " " << num[maxloc[maxl]];
}

return 0;
}

#### 1007. Maximum Subsequence Sum (25) -- 动态规划

2015-08-13 21:11:58

#### 1007. Maximum Subsequence Sum (25)-PAT甲级真题（动态规划dp）

2016-08-07 20:13:17

#### 【PAT】1007. Maximum Subsequence Sum (25)

2013-08-23 16:11:58

#### PAT 1007 Maximum Subsequence Sum（最长子段和）

2016-05-26 19:37:48

#### 1007. Maximum Subsequence Sum （最大连续子序列）

2017-03-28 21:38:15

#### 算法笔记-1-最大子列和-Maximum Subsequence Sum

2016-09-18 22:58:39

#### MOOC ：01-复杂度2 Maximum Subsequence Sum

2015-10-07 21:55:40

#### PAT 1007 Maximum Subsequence Sum（最大子串和）

2017-05-10 19:03:21

#### 01-复杂度2.Maximum Subsequence Sum

2015-03-05 19:17:25

#### PAT 数据结构 01-复杂度2. Maximum Subsequence Sum (25)

2015-07-13 10:29:53