最小生成树普里姆算法--C语言实现

本文转载自(点击阅读原文)博客,如有侵权,联系立即删除
微笑
#include <stdio.h>

#define MAX 100
#define INF 0x3f3f3f3f

int graph[MAX][MAX];

int Prim(int graph[][MAX], int n)
{
    int lowcost[MAX], mst[MAX];
    /*
        lowcost[i]记录以i为终点的边的最小权值,当lowcost[i]=0时表示终点i加入生成树
        mst[i]记录对应lowcost[i]的起点,当mst[i]=0时表示起点i加入生成树
    */
    int i, j, min, minid, sum = 0;

    for (i = 2; i <= n; i++)  //默认选择1号节点加入生成树,从2号节点开始初始化
    {
        lowcost[i] = graph[1][i];  //最短距离初始化为其他节点到1号节点的距离
        mst[i] = 1;  //标记所有节点的起点皆为默认的1号节点
    }

    mst[1] = 0;  //标记1号节点加入生成树

    for (i = 2; i <= n; i++)  //n个节点至少需要n-1条边构成最小生成树
    {
        min = INF;
        minid = 0;

        for (j = 2; j <= n; j++)  //找满足条件的最小权值边的节点minid
        {
            if (lowcost[j] < min && lowcost[j] != 0)  //边权值较小且不在生成树中
            {
                min = lowcost[j];
                minid = j;
            }
        }
        printf("%c - %c : %d\n", mst[minid] + 'A' - 1, minid + 'A' - 1, min);  //输出生成树边的信息:起点,终点,权值

        sum += min;  //累加权值
        lowcost[minid] = 0;  //标记节点minid加入生成树

        for (j = 2; j <= n; j++)  //更新当前节点minid到其他节点的权值
        {
            if (graph[minid][j] < lowcost[j])  ///发现更小的权值
            {
                lowcost[j] = graph[minid][j];  //更新权值信息
                mst[j] = minid;  //更新最小权值边的起点
            }
        }
    }
    return sum;  //返回最小权值和
}

int main()
{
    int m, n, weight;
    char chx, chy;

    scanf("%d %d", &m, &n);  //读取节点和边的数目
    getchar();
    for (int i = 1; i <= m; i++)  //初始化图,所有节点间距离为无穷大
        for (int j = 1; j <= m; j++)
            graph[i][j] = INF;
    for (int k = 0; k < n; k++)  //读取边信息
    {
        scanf("%c %c %d", &chx, &chy, &weight);
        getchar();
        int i = chx - 'A' + 1, j = chy - 'A' + 1;  ///ABCDEF
        graph[i][j] = weight;
        graph[j][i] = weight;
    }

    printf("Total: %d\n", Prim(graph, m));

    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页