基于安全多方计算的两方推理

本文探讨了安全多方计算(MPC)在机器学习推理中的隐私保护问题,重点分析了基于MPC的两方安全推理框架。安全推理确保在不泄露数据和模型隐私的情况下完成推理任务。文章介绍了MPC的基础技术,如OT、GC、SS和HE,并对比了Cryptflow2和Cheetah两个先进实用的技术框架,展示了它们在计算性能和通信开销方面的优势。尽管现有方案已有显著进步,但提高性能、准确率和安全性仍是未来研究的重点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘  要

数字基础设施的发展加速了个人隐私数据在机器学习中的应用。随着机器学习即服务的市场规模逐步扩大,服务提供商和用户在双向获利的同时也面临着严重的隐私泄露风险。因此,安全推理作为隐私保护机器学习的一个分支,成为科学界和工业界的研究热点。安全多方计算是安全推理最重要的密码学工具。从机器学习推理中潜在的隐私问题出发,引入安全多方计算技术,进一步对基于安全多方计算实现的安全推理框架进行分析研究,重点分析和评估了业界先进且实用的技术框架。最后进行了总结与展望,给出了隐私保护机器学习及安全推理的未来发展的思考与建议。

内容目录:

1 背景概述

1.1 机器学习推理及其存在的隐私问题

1.2 MPC 密码技术

2 两方安全推理研究

2.1 两方安全推理模型架构

2.2 两方安全推理方案概览

2.3 两方安全推理方案分析

3 实用性两方安全推理方案研究

3.1 Cryptflow2 和 Cheetah 的技术分析

3.2 Cryptflow2 和 Cheetah 的实验分析

3.3 Cryptflow2 和 Cheetah 的对比结论

4 结 语

人工智能是引领科技创新与产业变革的重要驱动力量,随着人工智能技术的飞速发展以及在不同行业领域的深化应用,世界各国均将人工智能列为提升国家竞争力、维护国家安全的重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗思付之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值