摘 要
数字基础设施的发展加速了个人隐私数据在机器学习中的应用。随着机器学习即服务的市场规模逐步扩大,服务提供商和用户在双向获利的同时也面临着严重的隐私泄露风险。因此,安全推理作为隐私保护机器学习的一个分支,成为科学界和工业界的研究热点。安全多方计算是安全推理最重要的密码学工具。从机器学习推理中潜在的隐私问题出发,引入安全多方计算技术,进一步对基于安全多方计算实现的安全推理框架进行分析研究,重点分析和评估了业界先进且实用的技术框架。最后进行了总结与展望,给出了隐私保护机器学习及安全推理的未来发展的思考与建议。
内容目录:
1 背景概述
1.1 机器学习推理及其存在的隐私问题
1.2 MPC 密码技术
2 两方安全推理研究
2.1 两方安全推理模型架构
2.2 两方安全推理方案概览
2.3 两方安全推理方案分析
3 实用性两方安全推理方案研究
3.1 Cryptflow2 和 Cheetah 的技术分析
3.2 Cryptflow2 和 Cheetah 的实验分析
3.3 Cryptflow2 和 Cheetah 的对比结论
4 结 语
人工智能是引领科技创新与产业变革的重要驱动力量,随着人工智能技术的飞速发展以及在不同行业领域的深化应用,世界各国均将人工智能列为提升国家竞争力、维护国家安全的重
本文探讨了安全多方计算(MPC)在机器学习推理中的隐私保护问题,重点分析了基于MPC的两方安全推理框架。安全推理确保在不泄露数据和模型隐私的情况下完成推理任务。文章介绍了MPC的基础技术,如OT、GC、SS和HE,并对比了Cryptflow2和Cheetah两个先进实用的技术框架,展示了它们在计算性能和通信开销方面的优势。尽管现有方案已有显著进步,但提高性能、准确率和安全性仍是未来研究的重点。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



