基于图卷积神经网络的无线基站流量预测研究

该研究采用图神经网络方法,结合GCN与GRU,对无线基站流量进行多时刻预测。相较于传统预测模型,该模型在中国联通某市基站数据上的验证结果显示预测误差降低,准确率大幅提升,证明了图神经网络在处理基站间关系时的优越性。
摘要由CSDN通过智能技术生成

摘  要

采用图神经网络方法对无线网络基站进行流量预测,首先基于基站地理距离构建预定义网络拓扑图,其次利用GCN提取基站之间的空间依赖关系,然后将结果输入到门控循环单元GRU提取基站之间的时间依赖关系,最后通过全连接层对基站未来多个时刻的流量做出精确预测。利用中国联通某市基站数据进行模型验证,实验结果表明,该模型相对于其他主流预测模型进一步降低了预测误差,模型预测准确率大幅度提升。

   0 1   

研究背景

为支撑无线网络基站License资源动态调配及基站智能节能场景,需要对无线基站未来多个时刻流量做出精准预测,根据预测的结果可以提前部署进行网络资源优化、设备降耗节能以及精准运维。而当前对无线网络基站的通信流量预测主要是单个节点预测,很少考虑节点与节点之间的连接关系,模型的预测准确度不高,严重制约智能化运营策略的实施效能。随着人工智能技术在通信领域的应用愈加广泛,可表示为节点之间复杂关系的拓扑图结构数据要素价值愈发凸显,加上通信网络设备之间天然的拓扑连接结构,图神经网络算法在复杂网络场景下可表现出更优的决策能力,大幅度提高网络智能运营效能。

   0 2   

研究综述

2.1 多变量时序预测方法

当前对无线网络基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗思付之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值